Beispiel #1
0
    def __plot_bunches(self,
                       fig: plt.Figure,
                       ax: plt.Axes,
                       point: FiniteMetricVertex,
                       name: str = "u") -> None:
        """
        Plot all points and highlight the bunches for the given point on
        the provided figure/axes.

        :param fig: The matplotlib figure to plot on.
        :param ax: The matplotlib axes to plot on.
        :param point: The vertex whose bunches we wish to plot.
        :param name: The name to use to label the vertex/bunches.
        """
        ax.cla()

        # Plot all points and color by set A_i
        ax.scatter([v.i for v in self.vertices], [v.j for v in self.vertices],
                   s=4,
                   color="black",
                   marker=".",
                   label="Points")

        # Plot and label the point itself
        ax.scatter([point.i], [point.j],
                   s=12,
                   color="red",
                   marker="*",
                   label=name)
        ax.annotate(name, (point.i, point.j), color="red")

        # Force the xlim and ylim to become fixed
        ax.set_xlim(*ax.get_xlim())
        ax.set_ylim(*ax.get_ylim())

        # For the current point, mark and label its p_i s
        # and add circles
        p_i = [self.p[point][i] for i in range(self.k)]
        for i in range(1, self.k):
            if p_i[i] is None:
                continue
            ax.annotate("p_{}({})".format(i, name), (p_i[i][0].i, p_i[i][0].j),
                        xytext=(5, 5),
                        textcoords="offset pixels",
                        color="violet")
            circ = plt.Circle((point.i, point.j), p_i[i][1], fill=False)
            ax.add_patch(circ)

        # Plot the points in the bunch
        B = [w for w in self.B[point]]
        ax.scatter([w.i for w in B], [w.j for w in B],
                   s=12,
                   color="lime",
                   marker="*",
                   label="B({})".format(name))

        ax.set_title("Bunch B({})".format(name))
        ax.legend(bbox_to_anchor=(1.05, 1.0), loc='upper left')
        plt.tight_layout()
        fig.show()
def plot_roc(roc: ROC,
             title: str = "",
             label: str = "",
             show=False,
             save=False,
             fig: plt.Figure = None):
    if fig is None:
        fig = plt.figure()
        ax = fig.add_axes([0.1, 0.1, 0.85, 0.8])
    else:
        ax = fig.get_axes()
        assert len(ax) == 1
        ax = ax[0]

    lw = 2
    fpr, tpr, _ = roc
    ax.plot(fpr, tpr, lw=lw, label=label)

    ax.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
    ax.set(xlabel='FPR', ylabel='TPR', ylim=[0.0, 1.05], xlim=[0.0, 1.0])
    ax.set_title(title, fontsize=15)
    ax.legend(loc="lower right")
    # fig.tight_layout()
    if show:
        fig.show()
    if save:
        fig.savefig(f'figs/{title}_{label}.png')
    return fig
Beispiel #3
0
    def __plot_p_i(self,
                   fig: plt.Figure,
                   ax: plt.Axes,
                   point: FiniteMetricVertex,
                   name: str = "u") -> None:
        """
        Plot all points and highlight the witnesses p_i for the given point
        along with corresponding rings on the given figure and axes.

        :param fig: The matplotlib figure to plot on.
        :param ax: The matplotlib axes to plot on.
        :param point: The vertex whose witnesses/rings we wish to plot.
        :param name: The name to use to label the vertex/bunches.
        """
        ax.cla()

        # Plot all points and color by set A_i
        for i, a_i in enumerate(self.A):
            ax.scatter([v.i for v in a_i], [v.j for v in a_i],
                       s=8,
                       marker="o",
                       label="A_{}".format(i))

        # Plot and label the point itself
        ax.scatter([point.i], [point.j],
                   s=12,
                   color="red",
                   marker="*",
                   label=name)
        ax.annotate(name, (point.i, point.j), color="red")

        # Force the xlim and ylim to become fixed
        ax.set_xlim(*ax.get_xlim())
        ax.set_ylim(*ax.get_ylim())

        # For the current point, mark and label its p_i s
        # and add circles
        p_i = [self.p[point][i] for i in range(self.k)]
        for i in range(1, self.k):
            if p_i[i] is None:
                continue
            ax.annotate("p_{}({})".format(i, name), (p_i[i][0].i, p_i[i][0].j),
                        xytext=(5, 5),
                        textcoords="offset pixels",
                        color="violet")
            circ = plt.Circle((point.i, point.j), p_i[i][1], fill=False)
            ax.add_patch(circ)

        ax.set_title("Witnesses p_i({}) and rings.".format(name))
        ax.legend(bbox_to_anchor=(1.05, 1.0), loc='upper left')
        plt.tight_layout()
        fig.show()
def show_figure(figure: plt.Figure) -> None:
    """Shows the figure, even if the figure was shown and therefore closed before"""
    try:
        figure.show()
        plt.show()
    except AttributeError:
        # the exception is raised iff the figure was closed. In this case we need a dummy figure ans its manager
        # https://stackoverflow.com/questions/49503869/attributeerror-while-trying-to-load-the-pickled-matplotlib-figure
        dummy = plt.figure()
        new_manager = dummy.canvas.manager
        new_manager.canvas.figure = figure
        figure.set_canvas(new_manager.canvas)
        figure.show()
        plt.show()
Beispiel #5
0
    def __plot_A_i(self, fig: plt.Figure, ax: plt.Axes) -> None:
        """
        Plot all points and highlight the sampled sets A_i.

        :param fig: The matplotlib figure to plot on.
        :param ax: The matplotlib axes to plot on.
        """
        ax.cla()

        colors = get_cmap("Dark2").colors
        ax.set_prop_cycle(color=colors)
        for i, a_i in enumerate(self.A):
            ax.scatter([v.i for v in a_i], [v.j for v in a_i],
                       s=8,
                       marker="o",
                       label="A_{}".format(i))

        ax.set_title("Sampled sets A_i")
        ax.legend(bbox_to_anchor=(1.05, 1.0), loc='upper left')
        plt.tight_layout()
        fig.show()
Beispiel #6
0
def fig2widget(fig: Figure, **kwargs) -> widgets.Widget:
    out = widgets.Output()
    with out:
        fig.show()
    return out
Beispiel #7
0
    def __plot_query_state(self,
                           fig: plt.Figure,
                           ax: plt.Axes,
                           u: GraphVertex,
                           v: GraphVertex,
                           w: GraphVertex,
                           i: int,
                           final: bool = False) -> None:
        """
        Plot a single frame/plot that depicts the current state of the ADO
        query. Clears and overwrites any previous contents of the plot.

        :param ax: A Matplotlib Axes object representing the subplot being
        modified/displayed.
        :param u: The current value of u in the ADO query algorithm.
        :param v: The current value of v in the ADO query algorithm.
        :param w: The current value of w in the ADO query algorithm.
        :param i: The iteration of the ADO query algorithm.
        :param final: Whether or not this is the final query state/final
        iteration of the algorithm.
        """
        ax.cla()

        p_i_u = defaultdict(list)
        for i_val, (p, _) in self.p[u].items():
            p_i_u[p].append(i_val)

        # Color most nodes, black, but give special coloring to:
        # u, v, w, p_i(u)s and B(v)s.
        # Label u, v, w, p_i(u)s, and B(v)s
        node_colors = []
        node_labels = {}
        for n in self.vertices:
            if n == u:
                node_colors.append("red")
                node_labels[n.nx_node] = "u"
            elif n == v:
                node_colors.append("lime")
                node_labels[n.nx_node] = "v"
            elif n == w:
                node_colors.append("orange")
                node_labels[n.nx_node] = "w"
            elif n in p_i_u:
                node_colors.append("violet")
                i_values_str = ",".join(str(i) for i in p_i_u[n])
                node_labels[n.nx_node] = "p_{" + i_values_str + "}(u)"
            elif n in self.B[v]:
                node_colors.append("lime")
                node_labels[n.nx_node] = "B(v)"
            else:
                node_colors.append("black")

        # For the final plot, highlight the found path
        if final:
            path = self.__get_path(u, v, w)
            path_edges = set((path[i].nx_node, path[i + 1].nx_node)
                             for i in range(len(path) - 1))
            edge_colors = [
                "lime" if
                (u, v) in path_edges or (v, u) in path_edges else "black"
                for u, v in self.g.edges()
            ]
        else:
            edge_colors = "black"

        pos = {(x, y): (y, -x) for x, y in self.g.nodes()}
        nx.draw(self.g,
                pos=pos,
                ax=ax,
                node_size=100,
                font_size=10,
                node_color=node_colors,
                edge_color=edge_colors,
                labels=node_labels)

        # Add a plot title
        title = "Iteration {} (final)".format(i) \
            if final else "Iteration {}".format(i)
        ax.set_title(title)
        fig.show()
Beispiel #8
0
    def __plot_query_state(self,
                           fig: plt.Figure,
                           ax: plt.Axes,
                           u: FiniteMetricVertex,
                           v: FiniteMetricVertex,
                           w: FiniteMetricVertex,
                           i: int,
                           final: bool = False) -> None:
        """
        Plot a single frame/plot that depicts the current state of the ADO
        query. Clears and overwrites any previous contents of the plot.

        :param fig: A Matplotlib figure object representing the figure being
        modified/displayed.
        :param ax: A Matplotlib Axes object representing the subplot being
        modified/displayed.
        :param u: The current value of u in the ADO query algorithm.
        :param v: The current value of v in the ADO query algorithm.
        :param w: The current value of w in the ADO query algorithm.
        :param i: The iteration of the ADO query algorithm.
        :param final: Whether or not this is the final query state/final
        iteration of the algorithm.
        """
        ax.cla()

        # Plot all the points in the graph
        ax.scatter([v.i for v in self.vertices], [v.j for v in self.vertices],
                   s=4,
                   color="black",
                   marker=".",
                   label="Points")

        # Plot u, v, w with special symbols/colors
        ax.scatter([u.i], [u.j], s=12, color="red", marker="*", label="u")
        ax.annotate("u", (u.i, u.j), color="red")
        ax.scatter([v.i], [v.j], s=12, color="green", marker="*", label="v")
        ax.annotate("v", (v.i, v.j), color="green")
        ax.scatter([w.i], [w.j], s=5, color="orange", marker="p", label="w")
        ax.annotate("w", (w.i, w.j),
                    color="orange",
                    xytext=(-15, -10),
                    textcoords="offset pixels")

        # For the current u, mark and label its p_i(u)s
        p_i_u = [self.p[u][i] for i in range(self.k)]
        ax.scatter([v[0].i for v in p_i_u], [v[0].j for v in p_i_u],
                   s=4,
                   color="violet",
                   marker="o",
                   label="p_i(u)")
        for j in range(1, self.k):
            ax.annotate("p_{}(u)".format(j), (p_i_u[j][0].i, p_i_u[j][0].j),
                        xytext=(5, 5),
                        textcoords="offset pixels",
                        color="violet")

        # For the current v, highlight its batch B(v) in a different color
        B_v = [w for w in self.B[v]]
        ax.scatter([w.i for w in B_v], [w.j for w in B_v],
                   s=4,
                   color="lime",
                   marker="*",
                   label="B(v)")

        # Draw line from u to current w
        ax.add_line(Line2D([u.i, w.i], [u.j, w.j], color="pink"))

        # For the final plot, draw a line from w to current v as well
        if final:
            ax.add_line(Line2D([w.i, v.i], [w.j, v.j], color="palegreen"))

        title = "Iteration {} (final)".format(i) \
            if final else "Iteration {}".format(i)

        ax.set_title(title)
        ax.legend(bbox_to_anchor=(1.05, 1.0), loc='upper left')
        plt.tight_layout()
        fig.show()
Beispiel #9
0
def fig2widget(fig: Figure, **kwargs) -> widgets.Widget:
    out = widgets.Output()
    with out:
        fig.show()
        show_inline_matplotlib_plots()
    return out