def plotStats(fileName): # read in a playlist plist = plistlib.readPlist(fileName) # get tracks from playlist tracks = plist['Tracks'] # create lists of song ratings and track durations ratings = [] durations = [] # iterate through the tracks for trackId, track in tracks.items(): try: ratings.append(track['Album Rating']) durations.append(track['Total Time']) except: #ignore pass # ensure valid data was collected if ratings == [] or durations == []: print("No valid Album Rating/Total Time data in %s." % fileName) return # scatter plot x = np.array(durations, np.int32) # convert to minutes x = x/60000.0 y = np.array(ratings, np.int32) pyplot.subplot(2, 1, 1) pyplot(x, y, 'o') pyplot.axis([0, 1.05*np.max(x), -1, 110]) pyplot.xlabel('Track duration') pyplot.ylabel('Track rating') # plot histogram pyplot.subplot(2, 1, 2) pyplot.hist(x, bins=20) pyplot.xlabel('Track duration') pyplot.ylabel('Count') # show plot pyplot.show()
def main(): points=get_point_data('./scene0000_00_vh_clean_2.labels.ply') points=points[:] print(points) vols=oint_cloud_to_volume(points,4096,radius=1.0) pyplot(vol)
for point in pointslist[i]: p = Point(point[0], point[1]) if p.within(boundary) or checkPointOnBoundary(p): w[i].point(p.x, p.y) w[i].field('%d_FLD' % c) c += 1 """ if len(w[i].shapes())>=2: w[i].save(writePath) """ print("Number of shapes = %d \n\n" % len(w)) n = 0 for shape in w: print("shape %d contains %d points" % (n + 1, len(w[i].shapes()))) n += 1 for wr in w: for s in wr.shapes(): x = [] y = [] for p in s.points: print(p) x.append(p.x) y.append(p.y) pyplot(x, y) pyplot.xlim(-5, 5) pyplot.ylim(-5, 5) pyplot.show()
p = Point(point[0],point[1]) if p.within(boundary) or checkPointOnBoundary(p): w[i].point(p.x,p.y) w[i].field('%d_FLD' % c) c +=1 """ if len(w[i].shapes())>=2: w[i].save(writePath) """ print("Number of shapes = %d \n\n" % len(w)) n = 0 for shape in w: print("shape %d contains %d points" %(n+1, len(w[i].shapes()))) n += 1 for wr in w: for s in wr.shapes(): x=[];y=[] for p in s.points: print(p) x.append(p.x) y.append(p.y) pyplot(x,y) pyplot.xlim(-5, 5) pyplot.ylim(-5, 5) pyplot.show()
# 37. 頻度上位10語 # 出現頻度が高い10語とその出現頻度をグラフ(例えば棒グラフなど)で表示せよ. import matplotlib as plt frequency = __import__('36').frequency frequency = sorted(frequency.items(), key=lambda x:x[1], reverse=True) frequency[:10] plt.pyplot()
K = kahan_matrix(n, theta) print('Computed svd rank of matrix B:', compute_rank_svd(B, thres)) print('Computed qr rank of matrix B:', compute_rank_qr(B, thres)) print('Computed lu rank of matrix B:', compute_rank_lu(B, thres)) print('Computed python rank matric B:', np.linalg.matrix_rank(B)) print('Computed svd rank of matrix A:', compute_rank_svd(A, thres)) print('Computed qr rank of matrix A:', compute_rank_qr(A, thres)) print('Computed lu rank of matrix A:', compute_rank_lu(A, thres)) print('Computed python rank matric A:', np.linalg.matrix_rank(A)) print('Computed svd rank of matrix C:', compute_rank_svd(C, thres)) print('Computed qr rank of matrix C:', compute_rank_qr(C, thres)) print('Computed lu rank of matrix C:', compute_rank_lu(C, thres)) print('Computed python rank matric C:', np.linalg.matrix_rank(C)) print('Computed svd rank of matrix D:', compute_rank_svd(D, thres)) print('Computed qr rank of matrix D:', compute_rank_qr(D, thres)) print('Computed lu rank of matrix D:', compute_rank_lu(D, thres)) print('Computed python rank matric D:', np.linalg.matrix_rank(D)) print('Computed svd rank of matrix K:', compute_rank_svd(K, thres)) print('Computed qr rank of matrix K:', compute_rank_qr(K, thres)) print('Computed lu rank of matrix K:', compute_rank_lu(K, thres)) print('Computed python rank matric K:', np.linalg.matrix_rank(K)) #%% kladd matplotlib.pyplot(pyplot.imshow(K))
d = False j = 0 #The Q-Network while j < 99: j+=1 #Choose an action by greedily (with e chance of random action) from the Q-network a,allQ = sess.run([predict,Qout],feed_dict={inputs1:np.identity(16)[s:s+1]}) if np.random.rand(1) < e: a[0] = env.action_space.sample() #Get new state and reward from environment s1,r,d,_ = env.step(a[0]) #Obtain the Q' values by feeding the new state through our network Q1 = sess.run(Qout,feed_dict={inputs1:np.identity(16)[s1:s1+1]}) #Obtain maxQ' and set our target value for chosen action. maxQ1 = np.max(Q1) targetQ = allQ targetQ[0,a[0]] = r + y*maxQ1 #Train our network using target and predicted Q values _,W1 = sess.run([updateModel,W],feed_dict={inputs1:np.identity(16)[s:s+1],nextQ:targetQ}) rAll += r s = s1 if d == True: #Reduce chance of random action as we train the model. e = 1./((i/50) + 10) break jList.append(j) rList.append(rAll) print("Percent of succesful episodes: " + str(sum(rList)/num_episodes) + "%") plt.pyplot(rList)
# Uses alpha from mask student_img.paste(earth_small, (1162, 966), mask=earth_small) # Display fig3, axes3 = plt.subplots(1, 2) axes3[0].imshow(student_img, interpolation='none') axes3[1].imshow(student_img, interpolation='none') axes3[1].set_xlim(500, 1500) axes3[1].set_ylim(1130, 850) fig3.savefig('earth_eye') print(earth_img.size) print(earth_small.size) print(earth_img.size[1]) #13. """ matplotlib.pyplot (plt) The matplotlib library helps to plot images on a coordinate plane. numpy (np) Creates an array set for the images. PIL manipulates the images by cropping, filtering, etc """ #15. ''' a. Line 19 calls the function subplots from the matplotlib library. The function is being called with 2 argument(s): 1,2. The function returns 2 object(s), which is/are being assigned to ax. b. Line 20 calls __imshow()_ on ___ax[0]____