Beispiel #1
0
    def _violinplot(
        self,
        data: dataType,
        names: namesType,
        title: titleType = None,
        ax: matplotlib.axes.SubplotBase = None,
    ) -> matplotlib.figure.Figure:
        """For making violinplots."""

        if ax is None:
            _, ax = plt.subplots()
        else:
            ax = ax

        figure = ax.get_figure()
        width = max(self.num_players / 3, 12)
        height = width / 2
        spacing = 4
        positions = spacing * arange(1, self.num_players + 1, 1)
        figure.set_size_inches(width, height)
        ax.violinplot(
            data,
            positions=positions,
            widths=spacing / 2,
            showmedians=True,
            showextrema=False,
        )
        ax.set_xticks(positions)
        ax.set_xticklabels(names, rotation=90)
        ax.set_xlim([0, spacing * (self.num_players + 1)])
        ax.tick_params(axis="both", which="both", labelsize=8)
        if title:
            ax.set_title(title)
        plt.tight_layout()
        return figure
Beispiel #2
0
    def _violinplot(
            self,
            data: dataType,
            names: namesType,
            title: titleType = None,
            ax: matplotlib.axes.SubplotBase = None
    ) -> matplotlib.figure.Figure:
        """For making violinplots."""

        if ax is None:
            _, ax = plt.subplots()
        else:
            ax = ax

        figure = ax.get_figure()
        width = max(self.nplayers / 3, 12)
        height = width / 2
        spacing = 4
        positions = spacing * arange(1, self.nplayers + 1, 1)
        figure.set_size_inches(width, height)
        ax.violinplot(data,
                      positions=positions,
                      widths=spacing / 2,
                      showmedians=True,
                      showextrema=False)
        ax.set_xticks(positions)
        ax.set_xticklabels(names, rotation=90)
        ax.set_xlim([0, spacing * (self.nplayers + 1)])
        ax.tick_params(axis='both', which='both', labelsize=8)
        if title:
            ax.set_title(title)
        plt.tight_layout()
        return figure
Beispiel #3
0
    def stackplot(
        self,
        eco,
        title: titleType = None,
        logscale: bool = True,
        ax: matplotlib.axes.SubplotBase = None,
    ) -> matplotlib.figure.Figure:

        populations = eco.population_sizes

        if ax is None:
            _, ax = plt.subplots()
        else:
            ax = ax

        figure = ax.get_figure()
        turns = range(len(populations))
        pops = [
            [populations[iturn][ir] for iturn in turns]
            for ir in self.result_set.ranking
        ]
        ax.stackplot(turns, *pops)

        ax.yaxis.tick_left()
        ax.yaxis.set_label_position("right")
        ax.yaxis.labelpad = 25.0

        ax.set_ylim([0.0, 1.0])
        ax.set_ylabel("Relative population size")
        ax.set_xlabel("Turn")
        if title is not None:
            ax.set_title(title)

        trans = transforms.blended_transform_factory(ax.transAxes, ax.transData)
        ticks = []
        for i, n in enumerate(self.result_set.ranked_names):
            x = -0.01
            y = (i + 0.5) * 1 / self.result_set.num_players
            ax.annotate(
                n,
                xy=(x, y),
                xycoords=trans,
                clip_on=False,
                va="center",
                ha="right",
                fontsize=5,
            )
            ticks.append(y)
        ax.set_yticks(ticks)
        ax.tick_params(direction="out")
        ax.set_yticklabels([])

        if logscale:
            ax.set_xscale("log")

        plt.tight_layout()
        return figure
Beispiel #4
0
    def stackplot(
        self,
        eco,
        title: titleType = None,
        logscale: bool = True,
        ax: matplotlib.axes.SubplotBase = None,
    ) -> matplotlib.figure.Figure:

        populations = eco.population_sizes

        if ax is None:
            _, ax = plt.subplots()
        else:
            ax = ax

        figure = ax.get_figure()
        turns = range(len(populations))
        pops = [
            [populations[iturn][ir] for iturn in turns]
            for ir in self.result_set.ranking
        ]
        ax.stackplot(turns, *pops)

        ax.yaxis.tick_left()
        ax.yaxis.set_label_position("right")
        ax.yaxis.labelpad = 25.0

        ax.set_ylim([0.0, 1.0])
        ax.set_ylabel("Relative population size")
        ax.set_xlabel("Turn")
        if title is not None:
            ax.set_title(title)

        trans = transforms.blended_transform_factory(ax.transAxes, ax.transData)
        ticks = []
        for i, n in enumerate(self.result_set.ranked_names):
            x = -0.01
            y = (i + 0.5) * 1 / self.result_set.num_players
            ax.annotate(
                n,
                xy=(x, y),
                xycoords=trans,
                clip_on=False,
                va="center",
                ha="right",
                fontsize=5,
            )
            ticks.append(y)
        ax.set_yticks(ticks)
        ax.tick_params(direction="out")
        ax.set_yticklabels([])

        if logscale:
            ax.set_xscale("log")

        plt.tight_layout()
        return figure
Beispiel #5
0
 def plot_1_2(ax: matplotlib.axes.SubplotBase, diff_df: pd.DataFrame, row_id: int) -> None:
     ax.bar(diff_df.columns, diff_df.loc[row_id], color="red")
     ax.set_title("difference")
     ax.set_xlabel("k")
     ax.set_ylabel("diff")
     diff_df_min = diff_df.min().min()
     diff_df_max = diff_df.max().max()
     if CVResultsAggregator.check_limit(diff_df_min) and CVResultsAggregator.check_limit(diff_df_max):
         ax.set_ylim(diff_df_min - 1, diff_df_max + 1)
 def _plot_roc(self, axis: mpl.axes.SubplotBase, y_true: np.ndarray,
               y_pred: np.ndarray, label: str, color: str):
     x, y, _ = roc_curve(y_true, y_pred)
     axis.plot(x,
               y,
               color,
               label="{label}, area={auc:.2f}".format(auc=auc(x, y),
                                                      label=label))
     axis.plot([0, 1], [0, 1], 'k--')
     axis.set_xlabel("False Positive Rate")
     axis.set_ylabel("True Positive Rate")
     axis.set_title("ROC curves - {label}".format(label=label))
 def _plot_wordcloud(self, axis: mpl.axes.SubplotBase, wc: WordCloud,
                     words: List[str], label: str):
     """Plot a given wordcloud on given axis.
         axis: mpl.axes.SubplotBase, the subplot on which to plot
         wx: WordCloud, wordcloud object to use
         words: List[str], list of words to plot
         label:str, label for wordcloud
     """
     wordcloud = wc.generate(" ".join(words))
     axis.imshow(wordcloud, interpolation='bilinear')
     axis.set_title("Word cloud - {label}".format(label=label))
     plt.axis("off")
 def _heatmap(self, axis: mpl.axes.SubplotBase, data: np.matrix,
              labels: list, title: str, fmt: str):
     """ Plot given matrix as heatmap.
         axis: mpl.axes.SubplotBase, the subplot on which to plot
         data:np.matrix, the matrix to be plotted.
         labels:list, list of labels of matrix data.
         title:str, title of given image.
         fmt:str, string formatting of digids
     """
     heatmap(data,
             xticklabels=labels,
             yticklabels=labels,
             annot=True,
             fmt=fmt,
             cmap="YlGnBu",
             cbar=False)
     plt.yticks(rotation=0)
     plt.xticks(rotation=0)
     axis.set_title(title)
Beispiel #9
0
def plt_settings_axes(g: matplotlib.axes.SubplotBase,
                      count_df: dask.dataframe.core.DataFrame,
                      grouping_col: list, facet: str, hide_xtitle: bool,
                      log_y: bool) -> None:
    """
    Helper function for plot settings, used in function plt_generic_1d.
    Modifies parameter g for setting titles, axis, formats, etc.
    :param g: matplotlib Axes which will be modified directly in the function.
    :param count_df: pandas dataframe which is plotted.
    :param grouping_col: column for x axis.
    :param facet: parameter passed by function plt_generic_1d, giving information
    on whether we are plotting and average or a count value (on y axis).
    :param hide_xtitle: if set to True, doesn't display title for x axis 
    :param log_y: if set to True, plot in logarithmic scale (for y axis)
    :return: nothing. changes are done directly by modifying parameter g.
    """

    if facet not in ['freq', 'avg']:
        raise ValueError(
            'Parameter facet should be a string of value either "freq" or "avg"'
        )

    # SET X AXIS
    # Labels
    # no particular setup if number of labels is less than the first threshold
    num_xlabels = len(count_df[grouping_col])

    if num_xlabels < LABEL_THRESHOLD_ROTATION:
        g.set_xticklabels(count_df[grouping_col])

    # rotate by 90 degrees if number of labels is between first and second threshold
    elif num_xlabels < LABEL_THRESHOLD_SELECT:
        g.set_xticklabels(count_df[grouping_col], rotation=90)

    # display only certain labels (and rotate by 45 degrees) if number of labels is higher
    else:
        number_of_steps = num_xlabels / 50

        l = np.arange(0, num_xlabels, number_of_steps)

        pos = (l / num_xlabels) * (max(g.get_xticks()) - min(g.get_xticks()))
        g.set_xticks(pos)
        g.set_xticklabels(count_df[grouping_col].iloc[l], rotation=45)

    # Title
    # option to remove the x axis title (when its obvious, e.g. for the years)
    if hide_xtitle:
        g.set_xlabel('')
    else:
        g.set_xlabel(grouping_col)

    # SET Y AXIS
    # log scale option
    if log_y:
        g.set_yscale("log")
        if facet == 'freq':
            g.set_ylabel('# content items (log scale)')
        elif facet == 'avg':
            g.set_ylabel('title length (log scale)')

    else:
        if facet == 'freq':
            g.set_ylabel('# content items')
        elif facet == 'avg':
            g.set_ylabel('title length')

    # Labels
    ylabels = ['{:,.0f}'.format(y) for y in g.get_yticks()]
    g.set_yticklabels(ylabels)

    # Plot Title
    if facet == 'freq':
        g.set_title('Number of content items by %s' % grouping_col)
    elif facet == 'avg':
        g.set_title('Average title length of content items by %s' %
                    grouping_col)
Beispiel #10
0
 def plot_2_1(ax: matplotlib.axes.SubplotBase, pval_df: pd.DataFrame, row_id: int) -> None:
     ax.bar(pval_df.columns, -np.log10(pval_df.loc[row_id]), color="red")
     ax.set_title("significance of difference")
     ax.set_xlabel("k")
     ax.set_ylabel("-log10(p-value)")
     ax.set_ylim(0, 4)