Beispiel #1
0
    def __init__(self, maze_size, maze_kind, goal_fixed, maze_fixed,
                 goal_reward, wall_reward, **kwargs):
        super().__init__()
        self.size = maze_size
        self.kind = maze_kind
        self.maze_fixed = maze_fixed
        self.goal_fixed = goal_fixed
        self.goal_reward = goal_reward
        self.wall_reward = wall_reward

        if self.maze_fixed and self.kind == "maze":
            file = pkg_resources.resource_filename(
                "rl_trickery",
                "envs/mazes/raw_maze_{}.npy".format(int(self.size)))
            array = np.load(file)
            self.maze = Maze("empty", 8).from_numpy(array)
        else:
            self.maze = Maze(self.kind, self.size)

        if self.goal_fixed:
            self.maze.default_goal()

        self.motions = VonNeumannMotion()

        self.observation_space = Box(low=0,
                                     high=255,
                                     shape=list(self.maze.size) + [3],
                                     dtype=np.uint8)
        self.action_space = Discrete(len(self.motions))
Beispiel #2
0
    def __init__(self):
        super().__init__()

        # # Run by run env variables
        self.robber_start_idx = [[3, 3]]

        self.maze = SoloMaze()
        self.motions = VonNeumannMotion()

        self.observation_space = Box(low=0, high=len(self.maze.objects), shape=self.maze.size, dtype=np.uint8)
        self.action_space = Discrete(len(self.motions))

        # Players lists for grouping
        self.players = [self.maze.objects.robber]
        self.robber_list = [self.maze.objects.robber]
Beispiel #3
0
    def __init__(self):
        super(EightRooms, self).__init__()

        self.maze = Maze()
        self.motions = VonNeumannMotion()
        self.start_idx = []
        for i in range(ROOMS - 7):
            self.start_idx.append([[3, 3, i]])
        self.goal_idx = [[WIDTH - 2, WIDTH - 2, ROOMS - 1]]
        self.width = WIDTH
        self.rooms = ROOMS
        self.observation_space = Box(low=0,
                                     high=np.max([WIDTH, ROOMS]),
                                     shape=np.array(self.start_idx[0]).shape,
                                     dtype=np.uint8)
        self.action_space = Discrete(len(self.motions))
        self.steps = 0
Beispiel #4
0
    def __init__(self, maze):
        """
        https://github.com/zuoxingdong/mazelab
        https://github.com/zuoxingdong/mazelab/blob/master/examples/navigation_env.ipynb
        """
        super().__init__()
        self.reward = None
        self.stepcost = None
        self.maze = maze
        self.motions = VonNeumannMotion()
        self.actions = [(0, 1), (1, 0), (0, -1),
                        (-1, 0)]  # NORTH, EAST, SOUTH, WEST

        self.observation_space = Box(low=0,
                                     high=len(self.maze.objects),
                                     shape=self.maze.size,
                                     dtype=np.uint8)
        self.action_space = Discrete(len(self.motions))

        # viz properties
        self.env_lw = 2
Beispiel #5
0
    def __init__(self, agent_num):
        super().__init__()

        self.agent_num = agent_num
        self.maze = MAMaze(self.agent_num)
        self.gt_global_map = self.maze.to_value()
        self.motions = VonNeumannMotion()

        self.observation_space = Box(low=0,
                                     high=len(self.maze.objects),
                                     shape=self.maze.size,
                                     dtype=np.uint8)
        self.action_space = Discrete(len(self.motions))

        self.global_map_size = 60
        self.local_map_size = 11

        self.global_map = np.full((self.global_map_size, self.global_map_size),
                                  -1)

        self.step_n = 5

        self.episode_length = 5