def cv_fun(x_tr,y_tr,x_te,y_te):
    names = ['mimo','miso']
    models = [MIMO(n_boosts, lgb_pars),MISO(n_boosts, lgb_pars)]
    y_hat = {}
    for i, m in enumerate(models):
        m.fit(x_tr, y_tr)
        y_hat[names[i]] = m.predict(x_te)

    rmse_base, mape_base = [{}, {}]
    for i,n in enumerate(names):
        rmse_base[n] = np.mean(np.mean((y_hat[n] - y_te)**2, axis=0)**0.5)
        mape_base[n] = np.mean(np.mean(np.abs(y_hat[n] - y_te)/(np.abs(y_te)+1e-3), axis=0))
        print('{} rmse: {:0.2e}, mape: {:0.2e}'.format(n,rmse_base[n],mape_base[n]))

    mape, rmse = [{}, {}]
    for n_h in np.arange(5, 120, 5):
        mbt_pars = deepcopy(mbt_pars_0)
        mbt_pars['n_harmonics'] = n_h

        m = MBT(**mbt_pars)
        m.fit(x_tr, y_tr, do_plot=False)
        y_hat_mbt = m.predict(x_te)

        rmse[n_h] = np.mean(np.mean((y_hat_mbt - y_te)**2, axis=0)**0.5)
        mape[n_h] = np.mean(np.mean(np.abs(y_hat_mbt - y_te)/(np.abs(y_te)+1e-3), axis=0))
        print('rmse: {:0.4e}, mape: {:0.4e}, n_h {}'.format(rmse[n_h],mape[n_h], n_h))

    results = {'mape':mape,
               'rmse':rmse,
               'mape_mimo': mape_base['mimo'],
               'mape_miso':mape_base['miso'],
               'rmse_mimo': rmse_base['mimo'],
               'rmse_miso':rmse_base['miso']
               }
    return results
Beispiel #2
0
def cv_fun(x_tr, y_tr, x_te, y_te, x_lingb_tr, x_lingb_te):
    models = []
    scores = {}
    x_tr_d, y_tr_d = np.diff(x_tr, axis=0), np.diff(y_tr, axis=0)
    x_te_d, y_te_d = np.diff(x_te, axis=0), np.diff(y_te, axis=0)
    x_lingb_tr = x_lingb_tr[0:-1, :]
    x_lingb_te = x_lingb_te[0:-1, :]

    # fit VSC canonical
    models.append(LinearRegression())
    models.append(RidgeCV(alphas=10**np.linspace(-2, 8, 20)))
    models.append(MBT(**mbt_pars_lin))
    models.append(MBT(**mbt_pars))

    names = ['linear', 'ridge', 'mbt lin', 'mbt']
    y_mean = np.ones_like(y_te_d) * np.mean(y_te_d, axis=0)
    for m, model in enumerate(models):
        print('start fitting model {}'.format(model))
        if names[m] == 'mbt lin':
            scores[names[m]] = noise_vsc(x_lingb_tr, y_tr_d, x_tr_d,
                                         x_lingb_te, x_te_d, y_te_d, y_mean,
                                         model)
        else:
            model_fitted = model.fit(x_tr_d, y_tr_d)
            y_hat = model_fitted.predict(x_te_d)
            scores[names[m]] = get_scores(y_hat, y_te_d, y_mean)
            print(scores[names[m]])
    plt.close('all')
    return scores
Beispiel #3
0
def cv_fun(x_tr, y_tr, x_te, y_te):
    names = ['mimo', 'miso']
    models = [MIMO(n_boosts, lgb_pars), MISO(n_boosts, lgb_pars)]
    y_hat = {}
    for i, m in enumerate(models):
        m.fit(x_tr, y_tr)
        y_hat[names[i]] = m.predict(x_te)

    rmse_base, mape_base = [{}, {}]
    for i, n in enumerate(names):
        rmse_base[n] = np.mean(np.mean((y_hat[n] - y_te)**2, axis=0)**0.5)
        mape_base[n] = np.mean(
            np.mean(np.abs(y_hat[n] - y_te) / (np.abs(y_te) + 1e-3), axis=0))
        print('{} rmse: {:0.2e}, mape: {:0.2e}'.format(n, rmse_base[n],
                                                       mape_base[n]))

    m = MBT(**deepcopy(mbt_pars_0))
    m.fit(x_tr, y_tr, do_plot=False)
    y_hat_mbt = m.predict(x_te)
    rmse = np.mean(np.mean((y_hat_mbt - y_te)**2, axis=0)**0.5)
    mape = np.mean(
        np.mean(np.abs(y_hat_mbt - y_te) / (np.abs(y_te) + 1e-3), axis=0))
    print('MAPE w.r.t. {}: {:0.2e}'.format(names[0],
                                           mape / mape_base[names[0]]))
    results = {
        'mape': mape,
        'rmse': rmse,
        'mape_mimo': mape_base['mimo'],
        'mape_miso': mape_base['miso'],
        'rmse_mimo': rmse_base['mimo'],
        'rmse_miso': rmse_base['miso']
    }
    return results
    def test_MSE_loss(self):
        n_tr = self.n_tr

        mbt = MBT()
        mbt.fit(self.x[:n_tr, :], self.y[:n_tr, :])
        y_hat = mbt.predict(self.x[n_tr:, :])

        plt.figure()
        plt.scatter(self.y[n_tr:, 0], y_hat[:, 0])
        plt.scatter(self.y[n_tr:, 1], y_hat[:, 1])
        x_l = np.min(self.y[n_tr:])
        x_u = np.max(self.y[n_tr:])
        plt.plot([x_l, x_u], [x_l, x_u])
        plt.pause(1)
        plt.close('all')
        assert len(mbt.trees) > 1
Beispiel #5
0
def cv_function(x_tr,y_tr,x_te,y_te,pars,do_refit):
    n_t = y_tr.shape[1]
    q_hat, q_hat_mgb = [[],[]]
    pars['refit'] = do_refit
    for t in range(n_t):
        # fit LGBM model
        q_hat_t = []
        for alpha in alphas:
            lgb_pars['alpha'] = alpha
            m = MISO(n_boost, lgb_pars)
            m.fit(x_tr, y_tr[:,[t]])
            q_hat_t.append(m.predict(x_te))
        q_hat_t = np.hstack(q_hat_t)
        q_hat.append(q_hat_t)

        # fit MBT model
        m = MBT(**pars)
        m.fit(x_tr, y_tr[:, [t]], do_plot=False)
        q_hat_t = m.predict(x_te)

        q_hat_mgb.append(q_hat_t)
        results_mimo_t = quantile_scores(np.expand_dims(q_hat[-1],2), y_te[:,[t]], alphas)
        results_mgb_t = quantile_scores(np.expand_dims(q_hat_mgb[-1],2), y_te[:, [t]], alphas)
        print('crsp mimo {:0.2e}, mbg {:0.2e}'.format(results_mimo_t['crps_mean'],results_mgb_t['crps_mean']))
    q_hat = np.dstack(q_hat)
    q_hat_mgb = np.dstack(q_hat_mgb)

    results_mimo = quantile_scores(q_hat, y_te, alphas)
    results_mgb = quantile_scores(q_hat_mgb, y_te, alphas)
    results = {'mimo':results_mimo,
               'mgb':results_mgb}
    plt.close('all')
    return results
 def test_MBT_instantiations_own(self):
     mbt_pars = {
         "early_stopping_rounds": 2,
         "n_boosts": 30,
         "do_refit": True
     }
     m = MBT(**mbt_pars)
     assert True
def noise_vsc(x_lingb_tr, y_tr_d, x_tr_d, x_lingb_te, x_te_d, y_te_d, y_mean,
              model):
    x_tree_tr = x_lingb_tr
    x_tree_te = x_lingb_te
    model = MBT(
        **{
            'n_boosts': model.n_boosts,
            'early_stopping_rounds': model.early_stopping_rounds,
            **model.tree_pars
        })
    model_fitted = model.fit(x_tree_tr, y_tr_d, x_lr=x_tr_d, do_plot=True)
    y_hat = model_fitted.predict(x_tree_te, x_lr=x_te_d)
    sc = get_scores(y_hat, y_te_d, y_mean)
    plt.figure()
    plt.scatter(y_te_d, y_hat, marker='.', alpha=0.2)
    plt.pause(0.1)
    print(sc)
    scores_noise = {}
    x_scores = {'noise:{}'.format(k): {} for k in np.arange(10)}
    for k, k_noise in enumerate(range(10)):
        # add noise only to the first x_tree_te variable (the PCC power) The other are deterministic
        noise = []
        for j in range(x_tree_te.shape[1] - 2):
            noise_j = truncnorm_rvs_recursive(x_te_d.shape[0], 3).reshape(
                -1, 1) * (np.mean(np.abs(x_tree_te[0, :])) * (k_noise / 50))
            noise.append(noise_j.reshape(-1, 1))
        noise = np.hstack(noise)

        x_hat = x_tree_te + np.hstack([noise, np.zeros((len(noise), 2))])
        x_scores['noise:{}'.format(k)]['mape'] = np.mean(
            np.abs(x_hat[:, 0] - x_tree_te[:, 0]) /
            np.abs(x_tree_te[:, 0] + 1e-2),
            axis=0)
        x_scores['noise:{}'.format(k)]['rmse'] = np.mean(
            (x_hat[:, 0] - x_tree_te[:, 0])**2, axis=0)**0.5
        y_hat_noise = model_fitted.predict(x_hat, x_lr=x_te_d)
        sc_n = get_scores(y_hat_noise, y_te_d, y_mean)
        scores_noise['noise:{}'.format(k)] = sc_n
    all_scores = {
        **sc, 'scores_noise_partial_cv': scores_noise,
        'x_scores': x_scores
    }
    return all_scores
 def test_MBT_instantiations_tree_loss_and_own(self):
     tree_pars = {"n_q": 4, "min_leaf": 34}
     mbt_pars = {
         "early_stopping_rounds": 5,
         "n_boosts": 32,
         "do_refit": True
     }
     loss_pars = {
         "lambda_weights": 0.1,
         "lambda_leaves": 0.1,
         "loss_type": "linear-regression"
     }
     pars = {**tree_pars, **mbt_pars, **loss_pars}
     m = MBT(**pars)
     assert True
Beispiel #9
0
for i in range(50):
    ax.cla()
    ax.plot(np.arange(24), x_tr[i, :], label='features')
    ax.scatter(25, y_tr[i, :], label='multivariate targets', marker='.')
    ax.set_xlabel('step ahead [h]')
    ax.set_ylabel('P [kW]')
    ax.legend(loc='upper right')
    ax.set_ylim(y_min, y_max)
    plt.pause(1e-6)
plt.close('all')

# --------------------------- Set up an MBT for quantiles prediction and train it -------------------------------------
alphas = np.linspace(0.05, 0.95, 7)
m = MBT(loss_type='quantile',
        alphas=alphas,
        n_boosts=40,
        min_leaf=300,
        lambda_weights=1e-3).fit(x_tr, y_tr, do_plot=True)

# --------------------------- Predict and plot ------------------------------------------------------------------------

y_hat = m.predict(x_te)

fig, ax = set_figure((5, 4))
y_min = np.min(y_tr[:50, :]) * 0.9
y_max = np.max(y_tr[:50, :]) * 1.1
n_q = y_hat.shape[1]
n_sa = y_te.shape[1]
n_plot = 300
colors = plt.get_cmap('plasma', int(n_q))
for fl in np.arange(np.floor(n_q / 2), dtype=int):
Beispiel #10
0
        print('start fitting')

        pars = {
            'n_q': 10,
            'min_leaf': 400,
            'lambda_leaves': 0.1,
            'lambda_weights': 1,
            'early_stopping_rounds': 3,
            'n_boosts': 100,
            'loss_type': 'latent_variable',
            'S': np.vstack([A, np.eye(A.shape[1])]),
            'precision': np.eye(y_hat_tr.shape[1])
        }

        # predict the MGB model on y_hat_te
        m = MBT(**pars)
        m.fit(np.hstack([y_hat_tr, err_tr, x_tr[0][:, -2:]]),
              y_tr - y_hat_tr[:, A.shape[0]:] @ pars['S'].T,
              do_plot=True)
        y_rec_mgb = m.predict(np.hstack([
            y_hat_te, err_te, x_te[0][:, -2:]
        ])) + y_hat_te[:, A.shape[0]:] @ pars['S'].T

        y_hat_te_bu = y_hat_te[:, A.shape[0]:] @ pars['S'].T

        scores_baseline = pd.concat(
            [scores_baseline, hier_scores(y_te, y_hat_te, sa)], axis=0)
        scores_bu = pd.concat(
            [scores_bu, hier_scores(y_te, y_hat_te_bu, sa)], axis=0)
        scores_rec = pd.concat(
            [scores_rec, hier_scores(y_te, y_rec, sa)], axis=0)
Beispiel #11
0
for i in range(50):
    ax.cla()
    ax.plot(np.arange(24), x_tr[i,:], label='features')
    ax.plot(np.arange(24) + 24, y_tr[i, :], label='multivariate targets')
    ax.set_xlabel('step ahead [h]')
    ax.set_ylabel('P [kW]')
    ax.legend(loc='upper right')
    ax.set_ylim(y_min, y_max)
    plt.pause(1e-2)
plt.close('all')


# --------------------------- Set up an MBT with smooth regularization and fit it -------------------------------------
print('#'*20 + '    Fitting MBT with smooth loss   ' + '#'*20)
m_sm = MBT(loss_type='time_smoother', lambda_smooth=1, n_boosts=30,
           min_leaf=300, lambda_weights=1e-3).fit(x_tr, y_tr, do_plot=True)
y_hat_sm = m_sm.predict(x_te)


# --------------------------- Set up 2 MBT with Fourier response  ------------------------------------------------------
print('#'*20 + '    Fitting MBT with Fourier loss and 3 harmonics    ' + '#'*20)

m_fou_3 = MBT(loss_type='fourier', n_harmonics=3, n_boosts=30,
              min_leaf=300, lambda_weights=1e-3).fit(x_tr, y_tr, do_plot=True)
y_hat_fou_3 = m_fou_3.predict(x_te)

print('#'*20 + '    Fitting MBT with Fourier loss and 5 harmonics    ' + '#'*20)

m_fou_5 = MBT(loss_type='fourier', n_harmonics=5, n_boosts=30,  min_leaf=300,
              lambda_weights=1e-3).fit(x_tr, y_tr, do_plot=True)
y_hat_fou_5 = m_fou_5.predict(x_te)
 def test_MBT_instantiations_tree(self):
     tree_pars = {"n_q": 4, "min_leaf": 322}
     m = MBT(**tree_pars)
     assert True
Beispiel #13
0
for i in range(50):
    ax.cla()
    ax.plot(np.arange(24), x_tr[i, :], label='features')
    ax.plot(np.arange(24) + 24, y_tr[i, :], label='multivariate targets')
    ax.set_xlabel('step ahead [h]')
    ax.set_ylabel('P [kW]')
    ax.legend(loc='upper right')
    ax.set_ylim(y_min, y_max)
    plt.pause(1e-6)
plt.close('all')

# --------------------------- Set up an MBT and fit it --------------------------------------------------------------
print('#' * 20 + '    Fitting MBT with mse loss   ' + '#' * 20)
m = MBT(n_boosts=30, min_leaf=100, lambda_weights=1e-3).fit(x_tr,
                                                            y_tr,
                                                            do_plot=True)
y_hat = m.predict(x_te)

# --------------------------- Set up 24 MISO LightGBM and fit it ------------------------------------------------------
print('#' * 20 + '    Fitting 24 MISO LightGBMs   ' + '#' * 20)

m_lgb = ut.LightGBMMISO(30).fit(x_tr, y_tr)
y_hat_lgb = m_lgb.predict(x_te)

# --------------------------- Set up a linear-MBT and fit it ----------------------------------------------------------
# The MBT chooses splits based on the previous day mean, min, max, first and last values. It then fits a linear
# model inside the leaves
print('#' * 20 + '    Fitting a linear-response MBT    ' + '#' * 20)

x_build = np.hstack([