Beispiel #1
0
def xi_to_pk(r, xi, ell=0, extrap=False):
    r"""
    Return a callable function returning the power spectrum multipole of degree
    :math:`\ell`, as computed from the Fourier transform of the input :math:`r`
    and :math:`\xi_\ell(r)` arrays.

    This uses the :mod:`mcfit` package perform the FFT.

    Parameters
    ----------
    r : array_like
        separation values where ``xi`` is evaluated
    xi : array_like
        the array holding the correlation function multipole values
    ell : int
        multipole degree of the input correlation function and the output power
        spectrum; monopole by default
    extrap : bool, optional
        whether to extrapolate the power spectrum with a power law; can improve
        the smoothness of the FFT

    Returns
    -------
    InterpolatedUnivariateSpline :
        a spline holding the interpolated power spectrum values
    """
    P = mcfit.xi2P(r, l=ell, lowring=True)
    kk, Pk = P(xi, extrap=extrap)
    return InterpolatedUnivariateSpline(kk, Pk)
    def _load_p_theta_interp(self, cs2, R):
        """Compute and return an interpolator for :math:`\left[P\ast \Theta\right](k,R_\mathrm{ex})` where is an exclusion window function.

        Args:
            cs2 (float): Squared-speed-of-sound :math:`c_s^2` counterterm in :math:`(h^{-1}\mathrm{Mpc})^2` units. (Unused if non_linear = False)
            R (float): Smoothing scale in :math:h^{-1}`\mathrm{Mpc}`. (Unused if non_linear = False)

        Returns:
            interp1d: Interpolator for :math:`\left[P\ast \Theta\right]` as a function of exclusion radius. This is evaluated for all k values.
        """
        if self.verb: print("Computing interpolation grid for P * Theta convolution")


        # Define a k grid
        kk = np.logspace(-4,1,10000)

        # Define a power spectrum
        hm2 = HaloModel(self.cosmology, self.mass_function, self.halo_physics, kk, kh_min = self.kh_min)
        pp = hm2.non_linear_power(cs2, R, self.pt_type, self.pade_resum, self.smooth_density, self.IR_resum)

        # Transform to real space for convolution
        r,xi = P2xi(kk,lowring=False)(pp)

        # Define interpolation grid
        RR = np.linspace(0,200,1000)

        # Multiply in real-space and transform
        xi = np.vstack([xi for _ in range(len(RR))])
        xi[r.reshape(1,-1)>RR.reshape(-1,1)]=0.

        # Interpolate into one dimension and return
        kk,pp = xi2P(r,lowring=False)(xi)
        int2d = interp2d(kk,RR,pp)
        int1d = interp1d(RR,int2d(self.kh_vector,RR).T)
        return lambda rr: int1d(rr.ravel())
Beispiel #3
0
def xi_to_pk(r, xi, ell=0, extrap=False):
    r"""
    Return a callable function returning the power spectrum multipole of degree
    :math:`\ell`, as computed from the Fourier transform of the input :math:`r`
    and :math:`\xi_\ell(r)` arrays.

    This uses the :mod:`mcfit` package perform the FFT.

    Parameters
    ----------
    r : array_like
        separation values where ``xi`` is evaluated
    xi : array_like
        the array holding the correlation function multipole values
    ell : int
        multipole degree of the input correlation function and the output power
        spectrum; monopole by default
    extrap : bool, optional
        whether to extrapolate the power spectrum with a power law; can improve
        the smoothness of the FFT

    Returns
    -------
    InterpolatedUnivariateSpline :
        a spline holding the interpolated power spectrum values
    """
    P = mcfit.xi2P(r, l=ell, lowring=True)
    kk, Pk = P(xi, extrap=extrap)
    return InterpolatedUnivariateSpline(kk, Pk)
Beispiel #4
0
def pip_convert(fname, cumulative=False):
  ##  Given a pip file, get the P(k) multipoles.
  data  = np.loadtxt(fname)

  s     = data[:,0]

  xi0   = data[:,1]
  xi2   = data[:,2]
  xi4   = data[:,3]

  if cumulative:
    ##  ss  = np.logspace(np.log(5.), np.log(150.), num=100, base=np.exp(1))
    ss      = numpy.logspace(-3, 3, num=60, endpoint=False)
    A       = 1 / (1 + x*x)**1.5

    '''
    steps   = np.diff(np.log(ss))
    step    = steps[0]

    ##  Interpolate on a grid.                                                                                                                                                                                                                                    
    Ci0     = interp1d(s, s ** 3. * xi0, kind='linear', copy=True, bounds_error=False, fill_value=0.0, assume_sorted=False)
    Ci2     = interp1d(s, s ** 3. * xi2, kind='linear', copy=True, bounds_error=False, fill_value=0.0, assume_sorted=False)
    Ci4     = interp1d(s, s ** 3. * xi4, kind='linear', copy=True, bounds_error=False, fill_value=0.0, assume_sorted=False)

    Ci0     = np.sum(Ci0(ss)) * step
    Ci2     = np.sum(Ci2(ss)) * step
    Ci4     = np.sum(Ci4(ss)) * step

    result  = []

    for nu, phase, CC in zip([0, 2, 4], [1., -1., 1.], [Ci0, Ci2, Ci4]):
      print('Solving for nu: %d' % nu)

      H1      =  mcfit.mcfit(ss, mcfit.kernels.Mellin_SphericalBesselJ(nu - 1, deriv=0), q=0)
      H2      =  mcfit.mcfit(ss, mcfit.kernels.Mellin_SphericalBesselJ(nu,     deriv=0), q=0)

      y1, B1  =  H1(ss * CC)
      y2, B2  =  H2(ss * CC / ss)

      Pl      =  4. * np.pi * phase * (-B1 + (nu + 1.0) * B2 / y2)  

      result.append(Pl) 
      '''

    return  y1, result[0], result[1], result[2]

  else:
    ##  New logarithmic r binning.                                                                                                                                                                                                                                 
    rs   = np.logspace(np.log10(0.2), np.log10(165.), 45, endpoint=True, base=10.)

    ##  Interpolate on a grid.                                                                                                                                                                                                                                      
    xi0  = interp1d(s, xi0, kind='linear', copy=True, bounds_error=False, fill_value=0.0, assume_sorted=False)
    xi2  = interp1d(s, xi2, kind='linear', copy=True, bounds_error=False, fill_value=0.0, assume_sorted=False)
    xi4  = interp1d(s, xi4, kind='linear', copy=True, bounds_error=False, fill_value=0.0, assume_sorted=False)

    xi0  = xi0(rs)
    xi2  = xi2(rs)
    xi4  = xi4(rs)
    
    ##  And conversion to Fourier.
    ks, P0 = xi2P(rs, l=0, lowring=False, deriv=0)(xi0, extrap=False)
    ks, P2 = xi2P(rs, l=2, lowring=False, deriv=0)(xi2, extrap=False)
    ks, P4 = xi2P(rs, l=4, lowring=False, deriv=0)(xi4, extrap=False)
    
    return  ks, P0, P2, P4
Beispiel #5
0
Q0 = interp1d(ss,
              Q0,
              kind='linear',
              copy=True,
              bounds_error=False,
              fill_value=(Q0[0], Q0[-1]),
              assume_sorted=False)
Q0 = Q0(s)

xi *= Q0

plt.loglog(k, linb * linb * Plin(k), c='k', linestyle='--')
plt.loglog(k, linb * linb * Pnl(k), c='k')

k, P = xi2P(s)(xi)

plt.loglog(k, linb * linb * P, alpha=0.5, c='tab:blue')

#
for marker, weighted in zip(['s', '^'], [0, 1]):
    output_dir = "/global/homes/m/mjwilson/desi/survey-validation/svdc-spring2020f-onepercent/clustering/pk/"
    output = os.path.join(output_dir,
                          "oneper_weighted_{:d}.json".format(weighted))

    r = ConvolvedFFTPower.load(output)

    poles = r.poles

    pl.axhline(r.attrs['shotnoise'], xmin=0.0, xmax=1.0, c='k', alpha=0.3)
Beispiel #6
0
  ## Load linear P(k), lin_pmm.dat
  data    = np.loadtxt('../dat/lin_pmm.dat')

  ks      = data[:,0]
  P0      = data[:,1]

  P0      = interp1d(ks, P0, kind='linear', copy=True, bounds_error=False, fill_value=0.0, assume_sorted=False)

  ## New logarithmic k binning.                                                                                                             
  ks      = np.logspace(-3.0, np.log10(3.), 45, endpoint=True, base=10.)
  P0      = P0(ks)

  pl.loglog(ks, P0, 'k-')
  
  rs, x2  = P2xi(ks, l=2)(P0)
  ks, P2  = xi2P(rs, l=2)(x2)

  pl.loglog(ks, P2, 'k^', markersize=3)
             
  ## Noise realisations.     
  result = []
     
  upper  = 25

  print  rs[upper]

  for i in np.arange(3000):
    noise           = np.copy(x2)
    noise[3:upper] += np.random.uniform(0.0, .2 * np.abs(x2[3:upper]), len(x2[3:upper]))

    ks, PN          = xi2P(rs, l=2)(noise)