Beispiel #1
0
 def motion_update(p):
     x, y, t = p
     new_p = (x + random.gauss(v_dt * cos(t), sigma),
              y + random.gauss(v_dt * sin(t), sigma),
              t + random.gauss(w_dt, sigma))
     if not mcl_tools.map_hit(new_p[0], new_p[1]):
         return new_p
     else:
         return mcl_tools.random_particle()
 def motion_update(p):
     x, y, t = p
     new_p = (x + random.gauss(v_dt*cos(t), sigma),
              y + random.gauss(v_dt*sin(t), sigma), 
              t + random.gauss(w_dt, sigma))
     if not mcl_tools.map_hit(new_p[0], new_p[1]):
         return new_p
     else:
         return mcl_tools.random_particle()
Beispiel #3
0
    def reset(self):  # would like a better way to do
        x = np.random.random() * MAP_WIDTH
        y = np.random.random() * MAP_HEIGHT

        while mcl_tools.map_hit(x, y):  # outside of map?
            x = np.random.random() * MAP_WIDTH
            y = np.random.random() * MAP_HEIGHT

        self.x = x
        self.y = y

        self.theta = np.random.random() * 2.0 * np.pi
        self.weight = 0.1
        self.forward_noise = 0.01
        self.turn_noise = 0.01
Beispiel #4
0
    def move(self, control):
        # print con
        # turn, and add randomness to the turning command
        forward, turn = control  # unpack linear/angular velocities
        theta = self.theta + float(turn) + np.random.normal(0.0, self.turn_noise)
        theta %= 2 * np.pi  # make sure between 0 and Tau

        dist = float(forward) + np.random.normal(0.0, self.forward_noise)
        x = self.x + (np.cos(theta) * dist)
        y = self.y + (np.sin(theta) * dist)
        x %= MAP_WIDTH  # cyclic truncate
        y %= MAP_HEIGHT  # make sure still inside world range

        self.set_pose(x, y, theta)  # adjust pose
        while mcl_tools.map_hit(self.x, self.y):  # movement now outside of map?
            #print "kill bad particle"
            self.reset()

        return self  # new object with updated values
Beispiel #5
0
def particle_filter(ps, control, scan):
    global last_time, PAR_COUNT, MID_LIFE, MID_UNCERT, MID_COUNT, \
        LONG_LIFE, LONG_UNCERT, LONG_COUNT

    if last_time is None:
        last_time = rp.get_rostime()

    # probabilistically move all the particles
    new_pos = partial(integrate_control_to_distance, control, (rp.get_rostime() - last_time).to_sec())
    last_time = rp.get_rostime()
    new_ps = []
    for part in ps:
        # part[0] = x
        # part[1] = y
        if not mcl_tools.map_hit(part[0], part[1]):
            # print "hit"
            new_ps.append(new_pos(part))
        else:
            new_ps.append(mcl_tools.random_particle())
    ps = new_ps  # update our particle set

    # update weights of each particle
    weights = []
    for part in ps:
        weight = particle_weight(scan, part)
        weights.append(weight)

    # normalize the weights
    weights = np.multiply(weights, 1.0 / np.sum(weights))

    '''
    ############ RESAMPLING! ##############
    '''
    correction = False

    # mid level corrections
    if MID_COUNT > MID_LIFE:  # crisis
        correction = True
        # resample 20%
        ps = mcl_tools.random_sample(ps, PAR_COUNT - MID_UNCERT, weights)
        rand_ps = []
        for x in range(MID_UNCERT):
            rand_ps.append(mcl_tools.random_particle())
        ps.extend(rand_ps)
        MID_COUNT = 0
        print "mid"
        return ps
    else:
        MID_COUNT += 1

    # big corrections
    if LONG_COUNT > LONG_LIFE:
        correction = True
        # resample 50%
        ps = mcl_tools.random_sample(ps, PAR_COUNT - LONG_UNCERT, weights)
        rand_ps = []
        for x in range(LONG_UNCERT):
            rand_ps.append(mcl_tools.random_particle())
        ps.extend(rand_ps)
        LONG_COUNT = 0
        print "long"
        return ps
    else:
        LONG_COUNT += 1

    # no corrections (normal resample all particles)
    if not correction:
        ps = mcl_tools.random_sample(ps, PAR_COUNT, weights)
        return ps