Beispiel #1
0
    def play(self):
        """Function to play a game vs the AI."""
        print("Start Human vs AI\n")

        mcts = MonteCarloTreeSearch(self.net)
        game = self.game.clone()  # Create a fresh clone for each game.
        game_over = False
        value = 0
        node = TreeNode()

        print("Enter your move in the form: row, column. Eg: 1,1")
        go_first = input("Do you want to go first: y/n?")

        if go_first.lower().strip() == 'y':
            print("You play as X")
            human_value = 1

            game.print_board()
        else:
            print("You play as O")
            human_value = -1

        # Keep playing until the game is in a terminal state.
        while not game_over:
            # MCTS simulations to get the best child node.
            # If player_to_eval is 1 play as the Human.
            # Else play as the AI.
            if game.current_player == human_value:
                action = input("Enter your move: ")
                if isinstance(action, str):
                    action = [int(n, 10) for n in action.split(",")]
                    action = (1, action[0], action[1])

                best_child = TreeNode()
                best_child.action = action
            else:
                best_child = mcts.search(game, node,
                                         CFG.temp_final)

            action = best_child.action
            game.play_action(action)  # Play the child node's action.

            game.print_board()

            game_over, value = game.check_game_over(game.current_player)

            best_child.parent = None
            node = best_child  # Make the child node the root node.

        if value == human_value * game.current_player:
            print("You won!")
        elif value == -human_value * game.current_player:
            print("You lost.")
        else:
            print("Draw Match")
        print("\n")
Beispiel #2
0
    def go(self):
        print("One rule:\r\n Move piece form 'x,y' \r\n eg 1,3\r\n")
        print("-" * 60)
        print("Ready Go")

        mc = MonteCarloTreeSearch(self.net, 1000)
        node = TreeNode()
        board = Board()

        while True:
            if board.c_player == BLACK:
                action = input(f"Your piece is 'O' and move: ")
                action = [int(n, 10) for n in action.split(",")]
                action = action[0] * board.size + action[1]
                next_node = TreeNode(action=action)
            else:
                _, next_node = mc.search(board, node)

            board.move(next_node.action)
            board.show()

            next_node.parent = None
            node = next_node

            if board.is_draw():
                print("-" * 28 + "Draw" + "-" * 28)
                return

            if board.is_game_over():
                if board.c_player == BLACK:
                    print("-" * 28 + "Win" + "-" * 28)
                else:
                    print("-" * 28 + "Loss" + "-" * 28)
                return

            board.trigger()
Beispiel #3
0
    def play(self):

        mcts = MonteCarloTreeSearch(self.net)
        game = deepcopy(self.game)
        game_over = False
        value = 0
        node = TreeNode()
        valid = 0
        # self.game.colorBoard()
        game.print_board()

        while not game_over:

            if game.current_player == self.human_player:
                valid = False
                while valid == False:
                    piece, refpt, rot, flip = self.get_input(game)
                    piece.create(0, (refpt[0], refpt[1]))

                    f = 'None'
                    if flip == 0:
                        f == 'None'
                    else:
                        f = 'h'

                    piece.flip(f)
                    piece.rotate(90 * rot)

                    valid = game.valid_move(piece.points, self.human_player)

                    if valid == False:
                        print('You selected an illegal move, please reselect')
                        # print('attempting', piece.points)
                        # print('corners are ', game.corners[self.human_player])

                    if piece.ID not in ['I5', 'I4', 'I3', 'I2']:
                        encoding = (refpt[0] * 14 +
                                    refpt[1]) * 91 + piece.shift + (
                                        rot // 90) * 2 + flip
                    else:
                        encoding = (refpt[0] * 14 +
                                    refpt[1]) * 91 + piece.shift + (
                                        rot // 90) * 1 + flip

                best_child = TreeNode()
                best_child.action = encoding
                print('CHOICE WAS MADE BY A HUMAN TO PLAY', piece.ID, '@',
                      refpt)

            else:
                best_child = mcts.search(game, node, CFG.temp_final)

            action = best_child.action
            game.play_action(action)

            game.print_board()
            # game.colorBoard()

            game_over, value = game.check_game_over(game.current_player)

            best_child.parent = None
            node = best_child

        if value == self.human_player * game.current_player:
            print("You won!")
        elif value == -self.human_player * game.current_player:
            print("You lost.")
        else:
            print("Draw Match")