return opts if __name__ == '__main__': opts = parseOptions() ########################### # GET THE GRIDWORLD ########################### import gridworld mdpFunction = getattr(gridworld, "get"+opts.grid) mdp = mdpFunction() mdp.setLivingReward(opts.livingReward) mdp.setNoise(opts.noise) env = gridworld.GridworldEnvironment(mdp) ########################### # GET THE DISPLAY ADAPTER ########################### import textGridworldDisplay display = textGridworldDisplay.TextGridworldDisplay(mdp) if not opts.textDisplay: import graphicsGridworldDisplay display = graphicsGridworldDisplay.GraphicsGridworldDisplay(mdp, opts.gridSize, opts.speed) display.start() ###########################
return opts if __name__ == '__main__': opts = parseOptions() ########################### # GET THE GRIDWORLD ########################### import gridworld mdpFunction = getattr(gridworld, "get" + opts.grid) mdp = mdpFunction() mdp.setLivingReward(opts.livingReward) mdp.setNoise(opts.noise) env = gridworld.GridworldEnvironment(mdp) ########################### # GET THE DISPLAY ADAPTER ########################### import textGridworldDisplay display = textGridworldDisplay.TextGridworldDisplay(mdp) if not opts.textDisplay: import graphicsGridworldDisplay display = graphicsGridworldDisplay.GraphicsGridworldDisplay( mdp, opts.gridSize, opts.speed) try: display.start() except KeyboardInterrupt: sys.exit(0)
# Attribution Information: The Pacman AI projects were developed at UC Berkeley. # The core projects and autograders were primarily created by John DeNero # ([email protected]) and Dan Klein ([email protected]). # Student side autograding was added by Brad Miller, Nick Hay, and # Pieter Abbeel ([email protected]). import mdp, util import gridworld from learningAgents import ValueEstimationAgent import collections # VOOR DEBUGGEN mdpFunction = gridworld.getBridgeGrid mdp = mdpFunction() mdp.setLivingReward(0) mdp.setNoise(0.2) env = gridworld.GridworldEnvironment(mdp) #a = ValueIterationAgent(mdp, 0.9, 100) class ValueIterationAgent(ValueEstimationAgent): """ * Please read learningAgents.py before reading this.* A ValueIterationAgent takes a Markov decision process (see mdp.py) on initialization and runs value iteration for a given number of iterations using the supplied discount factor. """ def __init__(self, mdp, discount=0.9, iterations=100): """
def main(myargs): sys.argv = myargs.split() opts = parseOptions() ########################### # GET THE GRIDWORLD ########################### if opts.grid == 'VerticalBridgeGrid': opts.gridSize = 120 import gridworld mdpFunction = getattr(gridworld, "get"+opts.grid) mdp = mdpFunction() mdp.setLivingReward(opts.livingReward) mdp.setNoise(opts.noise) env = gridworld.GridworldEnvironment(mdp) ########################### # GET THE DISPLAY ADAPTER ########################### import textGridworldDisplay display = textGridworldDisplay.TextGridworldDisplay(mdp) if not opts.textDisplay: import graphicsGridworldDisplay display = graphicsGridworldDisplay.GraphicsGridworldDisplay(mdp, opts.gridSize, opts.speed) try: display.start() except KeyboardInterrupt: sys.exit(0) ########################### # GET THE AGENT ########################### import valueIterationAgents, qlearningAgents a = None if opts.agent == 'value': a = valueIterationAgents.ValueIterationAgent(mdp, opts.discount, opts.iters) elif opts.agent == 'q': #env.getPossibleActions, opts.discount, opts.learningRate, opts.epsilon #simulationFn = lambda agent, state: simulation.GridworldSimulation(agent,state,mdp) gridWorldEnv = GridworldEnvironment(mdp) actionFn = lambda state: mdp.getPossibleActions(state) qLearnOpts = {'gamma': opts.discount, 'alpha': opts.learningRate, 'epsilon': opts.epsilon, 'actionFn': actionFn} a = qlearningAgents.QLearningAgent(**qLearnOpts) elif opts.agent == 'random': # # No reason to use the random agent without episodes if opts.episodes == 0: opts.episodes = 10 class RandomAgent: def getAction(self, state): return random.choice(mdp.getPossibleActions(state)) def getValue(self, state): return 0.0 def getQValue(self, state, action): return 0.0 def getPolicy(self, state): "NOTE: 'random' is a special policy value; don't use it in your code." return 'random' def update(self, state, action, nextState, reward): pass a = RandomAgent() else: if not opts.manual: raise 'Unknown agent type: '+opts.agent ########################### # RUN EPISODES ########################### # DISPLAY Q/V VALUES BEFORE SIMULATION OF EPISODES try: if not opts.manual and opts.agent == 'value': if opts.valueSteps: for i in range(opts.iters): tempAgent = valueIterationAgents.ValueIterationAgent(mdp, opts.discount, i) display.displayValues(tempAgent, message = "VALUES AFTER "+str(i)+" ITERATIONS") display.pause() display.displayValues(a, message = "VALUES AFTER "+str(opts.iters)+" ITERATIONS") display.pause() display.displayQValues(a, message = "Q-VALUES AFTER "+str(opts.iters)+" ITERATIONS") display.pause() except KeyboardInterrupt: sys.exit(0) # FIGURE OUT WHAT TO DISPLAY EACH TIME STEP (IF ANYTHING) displayCallback = lambda x: None if not opts.quiet: if opts.manual and opts.agent == None: displayCallback = lambda state: display.displayNullValues(state) else: if opts.agent == 'random': displayCallback = lambda state: display.displayValues(a, state, "CURRENT VALUES") if opts.agent == 'value': displayCallback = lambda state: display.displayValues(a, state, "CURRENT VALUES") if opts.agent == 'q': displayCallback = lambda state: display.displayQValues(a, state, "CURRENT Q-VALUES") messageCallback = lambda x: printString(x) if opts.quiet: messageCallback = lambda x: None # FIGURE OUT WHETHER TO WAIT FOR A KEY PRESS AFTER EACH TIME STEP pauseCallback = lambda : None if opts.pause: pauseCallback = lambda : display.pause() # FIGURE OUT WHETHER THE USER WANTS MANUAL CONTROL (FOR DEBUGGING AND DEMOS) if opts.manual: decisionCallback = lambda state : getUserAction(state, mdp.getPossibleActions) else: decisionCallback = a.getAction # RUN EPISODES if opts.episodes > 0: print() print("RUNNING", opts.episodes, "EPISODES") print() returns = 0 for episode in range(1, opts.episodes+1): returns += runEpisode(a, env, opts.discount, decisionCallback, displayCallback, messageCallback, pauseCallback, episode) if opts.episodes > 0: print() print("AVERAGE RETURNS FROM START STATE: "+str((returns+0.0) / opts.episodes)) print() print() # DISPLAY POST-LEARNING VALUES / Q-VALUES if opts.agent == 'q' and not opts.manual: try: display.displayQValues(a, message = "Q-VALUES AFTER "+str(opts.episodes)+" EPISODES") display.pause() display.displayValues(a, message = "VALUES AFTER "+str(opts.episodes)+" EPISODES") display.pause() except KeyboardInterrupt: sys.exit(0)
return opts if __name__ == '__main__': opts = parseOptions() stepsLimit=9 ########################### # GET THE GRIDWORLD ########################### import gridworld mdpFunction = getattr(gridworld, "get"+opts.grid) mdp = mdpFunction() mdp.setLivingReward(opts.livingReward) mdp.setNoise(0.1) env = gridworld.GridworldEnvironment(mdp) ########################### # GET THE DISPLAY ADAPTER ########################### import textGridworldDisplay display = textGridworldDisplay.TextGridworldDisplay(mdp) if not opts.textDisplay: import graphicsGridworldDisplay display = graphicsGridworldDisplay.GraphicsGridworldDisplay(mdp, opts.gridSize, opts.speed) try: display.start() except KeyboardInterrupt: sys.exit(0)