Beispiel #1
0
Datei: rmsd.py Projekt: DaMSL/ddc
def calc_deshaw_centroid_alpha_cartesian(ptlist=None):
  """ Calc RMSD from list of trajectories
  """
  if ptlist is None:
    pts = deshaw.loadpts(skip=100, filt=deshaw.FILTER['alpha'])
  else:
    pts = ptlist
  # sums = np.zeros(shape=(5, 58, 3))
  # cnts = [0 for i in range(5)]
  groupby = [[] for i in range(5)]
  label = deshaw.loadlabels_aslist()
  for idx, pt in enumerate(pts):
      # idx = math.floor(i/10)
      try:
        state = label[idx]
        if state == label[idx-2] == label[idx-1] == label[idx+1] == label[idx+2]:
          # sums[state] += pt
          # cnts[state] += 1
          groupby[state].append(pt)
      except IndexError as err:
        pass # ignore idx errors due to tail end of DEShaw data

  # cent = [sums[i] / cnts[i] for i in range(5)]
  cent = np.zeros(shape=(5, 58,3))
  for i in range(5):
    cent[i] = ndimage.measurements.center_of_mass(np.array(groupby[i]))
  return np.array(cent)
Beispiel #2
0
def calc_deshaw_centroid_alpha_cartesian(ptlist=None):
    """ Calc RMSD from list of trajectories
  """
    if ptlist is None:
        pts = deshaw.loadpts(skip=100, filt=deshaw.FILTER['alpha'])
    else:
        pts = ptlist
    # sums = np.zeros(shape=(5, 58, 3))
    # cnts = [0 for i in range(5)]
    groupby = [[] for i in range(5)]
    label = deshaw.loadlabels_aslist()
    for idx, pt in enumerate(pts):
        # idx = math.floor(i/10)
        try:
            state = label[idx]
            if state == label[idx - 2] == label[idx - 1] == label[
                    idx + 1] == label[idx + 2]:
                # sums[state] += pt
                # cnts[state] += 1
                groupby[state].append(pt)
        except IndexError as err:
            pass  # ignore idx errors due to tail end of DEShaw data

    # cent = [sums[i] / cnts[i] for i in range(5)]
    cent = np.zeros(shape=(5, 58, 3))
    for i in range(5):
        cent[i] = ndimage.measurements.center_of_mass(np.array(groupby[i]))
    return np.array(cent)
Beispiel #3
0
cent = np.load(home+'/ddc/bpti-alpha-cart-centroid-well.npy')
r.delete('label:hist')
for size in ['sm', 'md', 'lg']:
  r.delete('label:hist:%s'%size)
raw_obs = []
st = dt.datetime.now()

SM = 0.25
MD = .5
LG = 1

theta = {'sm':.25, 'md':.5, 'lg':1.}
raw_obs = {'sm':[], 'md':[], 'lg':[]}

missing = 0
points = deshaw.loadpts(skip=1000, filt=deshaw.FILTER['alpha'])
rmsd = []
for num, pt in enumerate(points):
  # rmsd.append(np.array([np.sum([LA.norm(pt[a] - C[a]) for a in range(58)]) for C in cent]))
  rmsd.append(np.array([LA.norm(pt - C) for C in cent]))
  prox = [np.argsort(i) for i in rmsd]

pipe = r.pipeline()
for i, rm in enumerate(rmsd):
  A = prox[i][0]
  B = prox[i][1]
  for size in ['sm', 'md', 'lg']:
    if (rm[B] - rm[A]) > theta[size]:
      raw_obs[size].append((A, A))
    else:
      raw_obs[size].append((A, B))