Beispiel #1
0
def preprocess_data(x, y, feature_num, seq_len, pre_len):
    nodes = x.shape[1]
    if feature_num == 1:
        x_ones, x_min, x_max = measure.Norm(np.array(torch.tensor(x).view(-1),
                                                     dtype=float),
                                            dim=1)
        source_x = torch.tensor(x_ones).view(-1, nodes)
    else:
        x_ones, x_min, x_max = measure.Norm(np.array(torch.tensor(x).view(
            -1, feature_num),
                                                     dtype=float),
                                            dim=2)
        source_x = torch.tensor(x_ones).view(-1, nodes, feature_num)
    global y_min
    global y_max
    y_ones, y_min, y_max = measure.Norm(np.array(torch.tensor(y).view(-1),
                                                 dtype=float),
                                        dim=1)

    source_y = torch.tensor(y_ones).view(-1, nodes)

    hist_x, fore_y = Divide(source_x, source_y, seq_len, pre_len)
    return TrainValidTest(hist_x, fore_y, valid=0.05)
Beispiel #2
0
def test(model, his_step, pre_step, x, y):
    print("device: ", device)
    feature_num = x.shape[-1]
    nodes = x.shape[1]
    x_ones, x_min, x_max = measure.Norm(np.array(torch.tensor(x).view(-1, feature_num), dtype=float), dim=2)
    y_ones, y_min, y_max = measure.Norm(np.array(torch.tensor(y).view(-1), dtype=float), dim=1)
    source_x = torch.tensor(x_ones).view(-1, nodes, feature_num)
    source_y = torch.tensor(y_ones).view(-1, nodes)
    hist_x, fore_y = Divide(source_x, source_y, his_step, pre_step)
    _, _, _, _, test_x, test_y = TrainValidTest(hist_x, fore_y, valid=0.05)
    model = model.to(device)
    with torch.no_grad():
        model = model.eval()
        test_x = test_x.to(device)
        test_outputs = model(test_x)
        test_outputs = test_outputs.cpu()
        test_y = test_y * (y_max - y_min) + y_min
        test_outputs = test_outputs * (y_max - y_min) + y_min
    rmse = measure.GetRMSE(test_outputs, test_y)
    mae = measure.GetMAP(test_outputs, test_y)
    skill = measure.Skill(test_outputs, test_y)
    print("RMSE:", rmse)
    print("MAE:", mae)
    print("SKILL:", skill)
    for i in range(pre_step):
        print('step ', i)
        to = test_outputs[:, :, i]
        ty = test_y[:, :, i]
        rmse = measure.GetRMSE(ty, to)
        mae = measure.GetMAP(ty, to)
        mape = measure.GetMAPE(ty, to)
        r2 = measure.R_square(ty, to)
        print("RMSE:", rmse)
        print("MAE:", mae)
        print("MAPE:", mape)
        print("R2:", r2)
Beispiel #3
0
def ImportantInRF(x, y):
    print(x.shape)
    feature_num = x.shape[-1]
    nodes = x.shape[1]
    print(feature_num)
    x, _, _ = measure.Norm(np.array(torch.tensor(x).view(-1, feature_num)),
                           dim=2)
    x = x.reshape(-1, nodes, feature_num)
    x, y = su.shuffle(x, y, random_state=0)
    train_size = int(len(x) * 0.9)
    score = None
    importances = None
    for i in range(x.shape[1]):
        start = time.time()
        x_city = x[:, i, :]
        y_city = y[:, i]
        train_x, test_x, train_y, test_y = x_city[:train_size], x_city[train_size:], \
                                           y_city[:train_size], y_city[train_size:]
        model = se.RandomForestRegressor(max_depth=10,
                                         n_estimators=1000,
                                         min_samples_split=3)
        model.fit(train_x, train_y)
        # 模型测试
        pred_test_y = model.predict(test_x)
        if i == 0:
            score = sm.r2_score(test_y, pred_test_y)
            importances = model.feature_importances_
        else:
            importances += model.feature_importances_
            score += sm.r2_score(test_y, pred_test_y)
        end = time.time()
        print('time: ', end - start)
    importances = importances / x.shape[1]
    score = score / x.shape[1]
    print('score: ', score)
    sorted_indexes = importances.argsort()[::-1]
    print(importances)
    print(attribute[sorted_indexes])
Beispiel #4
0
def Forecast(his_step, fore_step, x, y, lack=None):
    # x [num, city, feature]
    # y [num, city]
    RSME = []
    MAE = []
    SKILL = []
    feature_num = x.shape[2]
    num_hidden = 48
    num_layers = 1
    encoder = model_fs.EncoderGRU(feature_num,
                                  num_hidden,
                                  num_layers,
                                  device=device)
    decoder = model_fs.AttnDecoderRNN(feature_num, num_hidden, output_size=1)
    if cuda_gpu:
        encoder = encoder.to(device)
        decoder = decoder.to(device)
    enandde = model_fs.EncoderDecoderAtt(encoder=encoder,
                                         decoder=decoder,
                                         time_step=fore_step)
    criterion = nn.MSELoss()
    if cuda_gpu:
        enandde = enandde.to(device)
        criterion = criterion.to(device)
    optimizer = torch.optim.Adam(enandde.parameters(), lr=1e-2)
    for city in range(x.shape[1]):
        x_ones, _, _ = measure.Norm(x[:, city, :], 2)
        y_ones, y_min, y_max = measure.Norm(y[:, city], 1)
        hist_x, fore_y = Divide(his_step, fore_step, x_ones, y_ones)
        batch_size = 100
        epoch = 100
        train_x, train_y, test_x, test_y = TrainValidTest(hist_x, fore_y)
        train_loader = DataLoader(dataset=TensorDataset(train_x, train_y),
                                  batch_size=batch_size,
                                  shuffle=True,
                                  num_workers=4)
        for e in range(epoch):
            for i, data in enumerate(train_loader):
                inputs, target = data
                if cuda_gpu:
                    inputs, target = Variable(inputs).to(device), Variable(
                        target).to(device)
                else:
                    inputs, target = Variable(inputs), Variable(target)
                # print("epoch:", e, i, "inputs:", inputs.shape, "target:", target.shape)
                outputs, attn_weights = enandde(inputs)
                loss = criterion(outputs, target)
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
            if e % epoch == 0 or e + 1 == epoch:
                print('Epoch [{}/{}], Loss:{:.4f}'.format(
                    e + 1, epoch, loss.item()))
        with torch.no_grad():
            test_x = test_x.to(device)
            test_outputs, _ = enandde(test_x)
            test_outputs = test_outputs.cpu()
            test_y = test_y * (y_max - y_min) + y_min
            test_outputs = test_outputs * (y_max - y_min) + y_min
            rmse = measure.GetRMSE(test_outputs, test_y)
            mae = measure.GetMAP(test_outputs, test_y)
            skill = measure.Skill(test_outputs, test_y)
            RSME.append(rmse)
            MAE.append(mae)
            SKILL.append(skill)

    SaveNpy(RSME, "RMSE" + str(lack))
    SaveNpy(MAE, "MAE" + str(lack))
    SaveNpy(SKILL, "SKILL" + str(lack))
Beispiel #5
0
    def train(self):
        print("device: ", self.device)
        train_loss = []
        valid_rsme = []

        nodes = self.x.shape[1]
        feature_num = self.x.shape[-1]
        criterion = nn.MSELoss()
        if cuda_gpu:
            model = self.model.to(device)
            criterion = criterion.to(device)

        model = model.train()

        optimizer = torch.optim.Adam(model.parameters(),
                                     lr=self.lr,
                                     weight_decay=self.decay)

        x_ones, x_min, x_max = measure.Norm(np.array(torch.tensor(self.x).view(
            -1, feature_num),
                                                     dtype=float),
                                            dim=2)
        y_ones, y_min, y_max = measure.Norm(np.array(torch.tensor(
            self.y).view(-1),
                                                     dtype=float),
                                            dim=1)

        source_x = torch.tensor(x_ones).view(-1, nodes, feature_num)
        source_y = torch.tensor(y_ones).view(-1, nodes)

        hist_x, fore_y = Divide(source_x, source_y, self.his, self.pre)
        train_x, train_y, valid_x, valid_y, test_x, test_y = TrainValidTest(
            hist_x, fore_y, train=self.trainset, valid=0.05)

        setup_seed(20)
        train_loader = DataLoader(dataset=TensorDataset(train_x, train_y),
                                  batch_size=self.batch,
                                  shuffle=True)

        Valid_y = valid_y * (y_max - y_min) + y_min
        for e in range(self.epoch):
            for i, data in enumerate(train_loader):
                inputs, target = data
                if cuda_gpu:
                    inputs, target = Variable(inputs).to(device), Variable(
                        target).to(device)
                else:
                    inputs, target = Variable(inputs), Variable(target)

                y_hat = model(inputs)
                loss = criterion(y_hat, target)
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()

            if (e + 1) % 10 == 0:
                # print(device)
                print('Epoch [{}/{}], Loss:{:.4f}'.format(
                    e + 1, self.epoch, loss.item()))
                train_loss.append(loss.item())
                with torch.no_grad():
                    valid_x = valid_x.to(device)
                    MyModel = MyModel.eval()
                    valid_outputs = MyModel(valid_x)
                    valid_outputs = valid_outputs.cpu()
                    valid_outputs = valid_outputs * (y_max - y_min) + y_min
                    rmse = measure.GetRMSE(valid_outputs, Valid_y)
                    valid_rsme.append(rmse)
                    # mae = Measure.GetMAP(valid_outputs, Valid_y)
                    # skill = Measure.Skill(valid_outputs, Valid_y)
                    # valid_rmse.append(rmse)
                    print("valid RMSE:", rmse)
                    # print("valid MAE:", mae)
                    # print("valid SKILL:", skill)
                    model = model.train()

        np.save("valid_RSME" + model.name, np.array(valid_rsme))
        np.save("train_Loss" + model.name, np.array(train_loss))

        if self.valid is not None:
            print('valid result: ', rmse)
            return rmse, model.cpu()

        with torch.no_grad():
            model = model.eval()
            test_x = test_x.to(device)
            # print(test_y.shape)
            # test_outputs = T_GCN(test_x)
            test_outputs = MyModel(test_x)
            test_outputs = test_outputs.cpu()
            test_y = test_y * (y_max - y_min) + y_min
            test_outputs = test_outputs * (y_max - y_min) + y_min
            rmse = measure.GetRMSE(test_y, test_outputs)
            # mae = Measure.GetMAP(test_y, test_outputs)
            # mape = Measure.GetMAPE(test_y, test_outputs)
            # r2 = Measure.R_square(test_y, test_outputs)
            print("RMSE:", rmse)
            # print("MAE:", mae)
            # print("MAPE:", mape)
            # print("R2:", r2)
            # print(train_loss)
            # print(valid_rsme)
        return rmse, model.cpu()