Beispiel #1
0
def make_header_str(spc_dct, temps, pressures):
    """ makes the standard header and energy transfer sections for MESS input file
    """

    ioprinter.messpf('global_header')

    keystr1 = (
        'EnergyStepOverTemperature, ExcessEnergyOverTemperature, ' +
        'ModelEnergyLimit'
    )
    keystr2 = (
        'CalculationMethod, WellCutoff, ' +
        'ChemicalEigenvalueMax, ReductionMethod, AtomDistanceMin'
    )
    ioprinter.debug_message('     {}'.format(keystr1))
    ioprinter.debug_message('     {}'.format(keystr2))

    if is_abstraction(spc_dct):
        well_extend = None
    else:
        well_extend = 'auto'
        ioprinter.debug_message('Including WellExtend in MESS input')

    header_str = mess_io.writer.global_rates_input(
        temps, pressures, excess_ene_temp=None, well_extend=well_extend)

    return header_str
Beispiel #2
0
def run_messpf_task(run_messpf_tsk, spc_locs_dct, spc_dct, thm_paths_dct):
    """ Run messpf input file
    """
    ioprinter.messpf('run_header')

    spc_mods, _ = parser.models.extract_models(run_messpf_tsk)

    for spc_name in spc_locs_dct:
        ioprinter.therm_paths_messpf_run_locations(spc_name,
                                                   spc_locs_dct[spc_name],
                                                   spc_mods, thm_paths_dct)
        # Run MESSPF for all requested models, combine the PFS at the end
        ioprinter.message(f'Run MESSPF: {spc_name}', newline=1)
        _locs_pfs = []
        for spc_locs in spc_locs_dct[spc_name]:
            _mod_pfs = []
            for spc_mod in spc_mods:
                autorun.run_script(
                    autorun.SCRIPT_DCT['messpf'],
                    thm_paths_dct[spc_name][tuple(spc_locs)][spc_mod][0])
                _mod_pfs.append(
                    reader.mess.messpf(
                        thm_paths_dct[spc_name][tuple(spc_locs)][spc_mod][0]))

            # Unpack the the pf model combination information
            spc_mod_info = parser.models.split_model(spc_mod)
            _spc_mods, coeffs, operators = spc_mod_info

            final_pf = thermfit.pf.combine(_mod_pfs, coeffs, operators)
            writer.mess.output(
                fstring(spc_dct[spc_name]['inchi']),
                final_pf,
                thm_paths_dct[spc_name][tuple(spc_locs)]['mod_total'][0],
                filename='pf.dat')
            _locs_pfs.append(final_pf)
Beispiel #3
0
def produce_boltzmann_weighted_conformers_pf(run_messpf_tsk, spc_locs_dct,
                                             spc_dct, thm_paths_dct):
    """ Combine PFs into final pf
    """
    ioprinter.messpf('run_header')

    spc_mods, _ = parser.models.extract_models(run_messpf_tsk)
    print('starting produce_boltz...')

    for spc_name in spc_locs_dct:
        ioprinter.message(f'Run MESSPF: {spc_name}', newline=1)
        locs_pfs_arrays = []
        hf_array = []
        for idx, spc_locs in enumerate(spc_locs_dct[spc_name]):
            locs_pfs_arrays.append(
                reader.mess.messpf(
                    thm_paths_dct[spc_name][tuple(spc_locs)]['mod_total'][0]))
            hf_val = 0.
            for spc_mod in spc_mods:
                hf_val += (spc_dct[spc_name]['Hfs'][idx][spc_mod][0] /
                           len(spc_mods))
            hf_array.append(hf_val)
        final_pf = thermfit.pf.boltzmann_pf_combination(
            locs_pfs_arrays, hf_array)
        writer.mess.output(fstring(spc_dct[spc_name]['inchi']),
                           final_pf,
                           thm_paths_dct[spc_name]['spc_total'][0],
                           filename='pf.dat')
        spc_dct[spc_name]['Hfs']['final'] = [min(hf_array)]
    return spc_dct
Beispiel #4
0
def write_messpf_task(write_messpf_tsk, spc_locs_dct, spc_dct, pes_mod_dct,
                      spc_mod_dct, run_prefix, save_prefix, thm_paths_dct):
    """ Write messpf input file
    """
    ioprinter.messpf('write_header')

    spc_mods, pes_mod = parser.models.extract_models(write_messpf_tsk)

    for spc_name in spc_locs_dct:
        ioprinter.therm_paths_messpf_write_locations(spc_name,
                                                     spc_locs_dct[spc_name],
                                                     spc_mods, thm_paths_dct)
        for spc_locs in spc_locs_dct[spc_name]:
            for spc_mod in spc_mods:
                messpf_inp_str, dat_dct = qt.make_messpf_str(
                    pes_mod_dct[pes_mod]['therm_temps'], spc_dct, spc_name,
                    spc_locs, pes_mod_dct[pes_mod], spc_mod_dct[spc_mod],
                    run_prefix, save_prefix)
                ioprinter.messpf('input_string')
                ioprinter.info_message(messpf_inp_str)
                autorun.write_input(
                    thm_paths_dct[spc_name][tuple(spc_locs)][spc_mod][0],
                    messpf_inp_str,
                    aux_dct=dat_dct,
                    input_name='pf.inp')
Beispiel #5
0
def write_mess_output(formulastr, final_pf, mess_path, filename='pf.dat'):
    """ Write a mess output file for a pf file
    """

    mess_out_str = mess_io.writer.pf_output(formulastr, *final_pf)

    ioprinter.messpf('write_output', mess_path)
    if not os.path.exists(mess_path):
        os.makedirs(mess_path)
    with open(os.path.join(mess_path, filename), 'w') as mess_file:
        mess_file.write(mess_out_str)
Beispiel #6
0
def make_header_str(spc_dct, rxn_lst, pes_idx, pesgrp_num, pes_param_dct,
                    hot_enes_dct, label_dct, temps, pressures, float_type):
    """ Built the head of the MESS input file that contains various global
        keywords used for running rate calculations.

        Function determines certain input parameters for the well-extension
        methodology based on the reaction type stored in spc_dct.

        :param spc_dct:
        :type spc_dct: dict[]
        :param temps: temperatures for the rate calculations (in K)
        :type temps: tuple(float)
        :param pressures: pressures for the rate calculations (in atm)
        :type pressures: tuple(float)
        :rtype: str
    """

    ioprinter.messpf('global_header')

    keystr1 = ('EnergyStepOverTemperature, ExcessEnergyOverTemperature, ' +
               'ModelEnergyLimit')
    keystr2 = ('CalculationMethod, WellCutoff, ' +
               'ChemicalEigenvalueMax, ReductionMethod, AtomDistanceMin')
    ioprinter.debug_message(f'     {keystr1}')
    ioprinter.debug_message(f'     {keystr2}')

    # Set the well extension energy thresh
    if is_abstraction_pes(spc_dct, rxn_lst, pes_idx):
        well_extend = None
    else:
        well_extend = 'auto'
        ioprinter.debug_message('Including WellExtend in MESS input')

    # Set other parameters
    # Need the PES number to pull the correct params out of lists
    ped_spc_lst, hot_enes_dct, micro_out_params = energy_dist_params(
        pesgrp_num, pes_param_dct, hot_enes_dct, label_dct)

    header_str = mess_io.writer.global_rates_input(
        temps,
        pressures,
        calculation_method='direct',
        well_extension=well_extend,
        ped_spc_lst=ped_spc_lst,
        hot_enes_dct=hot_enes_dct,
        excess_ene_temp=None,
        micro_out_params=micro_out_params,
        float_type=float_type)

    return header_str
Beispiel #7
0
def make_global_etrans_str(rxn_lst, spc_dct, etrans_dct):
    """ Writes a string with defining global energy transfer parameters used
        for all wells on the PES that do not have parameters defined in their
        respective sections.

        As a default, the function will obtain parameters for the first well
        that appears on the PES.
    """

    ioprinter.messpf('transfer_section')

    # Determine the species for which you
    ioprinter.messpf('well_section')
    well_info = etrans.set_etrans_well(rxn_lst, spc_dct)

    # Determine the bath
    ioprinter.messpf('bath_section')
    bath_info = etrans.set_bath(spc_dct, etrans_dct)

    # Write the MESS energy transfer strings
    edown_str, collid_str = etrans.make_energy_transfer_strs(
        well_info, bath_info, etrans_dct)
    energy_trans_str = mess_io.writer.global_energy_transfer_input(
        edown_str, collid_str)

    return energy_trans_str
Beispiel #8
0
def make_header_str(spc_dct, temps, pressures):
    """ Built the head of the MESS input file that contains various global
        keywords used for running rate calculations.

        Function determines certain input parameters for the well-extension
        methodology based on the reaction type stored in spc_dct.

        :param spc_dct:
        :type spc_dct: dict[]
        :param temps: temperatures for the rate calculations (in K)
        :type temps: tuple(float)
        :param pressures: pressures for the rate calculations (in atm)
        :type pressures: tuple(float)
        :rtype: str
    """

    ioprinter.messpf('global_header')

    keystr1 = ('EnergyStepOverTemperature, ExcessEnergyOverTemperature, ' +
               'ModelEnergyLimit')
    keystr2 = ('CalculationMethod, WellCutoff, ' +
               'ChemicalEigenvalueMax, ReductionMethod, AtomDistanceMin')
    ioprinter.debug_message('     {}'.format(keystr1))
    ioprinter.debug_message('     {}'.format(keystr2))

    if is_abstraction_pes(spc_dct):
        well_extend = None
    else:
        well_extend = 'auto'
        ioprinter.debug_message('Including WellExtend in MESS input')

    header_str = mess_io.writer.global_rates_input(temps,
                                                   pressures,
                                                   excess_ene_temp=None,
                                                   well_extend=well_extend)

    return header_str
Beispiel #9
0
def make_global_etrans_str(rxn_lst, spc_dct, etrans_dct):
    """ Makes the standard header and energy transfer sections
        for MESS input file
    """

    ioprinter.messpf('transfer_section')

    # Determine the species for which you
    ioprinter.messpf('well_section')
    well_info = etrans.set_etrans_well(rxn_lst, spc_dct)

    # Determine the bath
    ioprinter.messpf('bath_section')
    bath_info = etrans.set_bath(spc_dct, etrans_dct)

    # Write the MESS energy transfer strings
    edown_str, collid_str = etrans.make_energy_transfer_strs(
        well_info, bath_info, etrans_dct)
    energy_trans_str = mess_io.writer.global_energy_transfer_input(
        edown_str, collid_str)

    return energy_trans_str
Beispiel #10
0
def make_pes_mess_str(spc_dct, rxn_lst, pes_idx, pesgrp_num, unstable_chnls,
                      run_prefix, save_prefix, label_dct, tsk_key_dct,
                      pes_param_dct, thy_dct, pes_model_dct_i, spc_model_dct_i,
                      spc_model):
    """ Write all the MESS input file strings for the reaction channels
    """

    ioprinter.messpf('channel_section')

    # Initialize data carrying objects and empty MESS strings
    basis_energy_dct = {}
    basis_energy_dct[spc_model] = {}

    full_well_str, full_bi_str, full_ts_str = '', '', ''
    full_dat_str_dct = {}

    # Set the energy and model for the first reference species
    ioprinter.info_message('\nCalculating reference energy for PES')
    ref_ene, model_basis_energy_dct = set_reference_ene(
        rxn_lst,
        spc_dct,
        tsk_key_dct,
        basis_energy_dct[spc_model],
        thy_dct,
        pes_model_dct_i,
        spc_model_dct_i,
        run_prefix,
        save_prefix,
        ref_idx=0)
    basis_energy_dct[spc_model].update(model_basis_energy_dct)

    print('basis energy dct')
    print(basis_energy_dct)

    # Loop over all the channels and write the MESS strings
    written_labels = []
    for rxn in rxn_lst:

        chnl_idx, (reacs, prods) = rxn

        ioprinter.obj('vspace')
        ioprinter.reading('PES electronic structure data')
        ioprinter.channel(chnl_idx + 1, reacs, prods)

        # Get the names for all of the configurations of the TS
        tsname = base_tsname(pes_idx, chnl_idx)
        tsname_allconfigs = tsnames_in_dct(pes_idx, chnl_idx, spc_dct)

        # Pass in full ts class
        chnl_infs, chn_basis_ene_dct = get_channel_data(
            reacs, prods, tsname_allconfigs, spc_dct, tsk_key_dct,
            basis_energy_dct[spc_model], thy_dct, pes_model_dct_i,
            spc_model_dct_i, run_prefix, save_prefix)

        basis_energy_dct[spc_model].update(chn_basis_ene_dct)

        # Calculate the relative energies of all spc on the channel
        chnl_enes = sum_channel_enes(chnl_infs, ref_ene)

        # Set the hot energies using the relative enes that will be
        # written into the global key section of MESS input later
        hot_enes_dct = set_hot_enes(pesgrp_num,
                                    reacs,
                                    prods,
                                    chnl_enes,
                                    pes_param_dct,
                                    ene_range=None)

        # Write the mess strings for all spc on the channel
        mess_strs, dat_str_dct, written_labels = _make_channel_mess_strs(
            tsname,
            reacs,
            prods,
            pesgrp_num,
            spc_dct,
            label_dct,
            written_labels,
            pes_param_dct,
            chnl_infs,
            chnl_enes,
            spc_model_dct_i,
            unstable_chnl=(chnl_idx in unstable_chnls))

        # Append to full MESS strings
        [well_str, bi_str, ts_str] = mess_strs
        full_well_str += well_str
        full_bi_str += bi_str
        full_ts_str += ts_str
        full_dat_str_dct.update(dat_str_dct)

    # Combine all the reaction channel strings; remove empty lines
    rxn_chan_str = '\n'.join([full_well_str, full_bi_str, full_ts_str])
    rxn_chan_str = ioformat.remove_empty_lines(rxn_chan_str)

    return rxn_chan_str, full_dat_str_dct, hot_enes_dct
Beispiel #11
0
def make_pes_mess_str(spc_dct, rxn_lst, pes_idx,
                      run_prefix, save_prefix, label_dct,
                      pes_model_dct_i, spc_model_dct_i,
                      spc_model, thy_dct):
    """ Write all the MESS input file strings for the reaction channels
    """

    ioprinter.messpf('channel_section')

    # Initialize empty MESS strings
    full_well_str, full_bi_str, full_ts_str = '', '', ''
    full_dat_str_dct = {}
    pes_ene_dct = {}
    conn_lst = tuple()

    # Set the energy and model for the first reference species
    ioprinter.info_message('\nCalculating reference energy for PES')
    ref_ene = set_reference_ene(
        rxn_lst, spc_dct, thy_dct,
        pes_model_dct_i, spc_model_dct_i,
        run_prefix, save_prefix, ref_idx=0)

    # Loop over all the channels and write the MESS strings
    written_labels = []
    basis_energy_dct = {}
    for rxn in rxn_lst:

        chnl_idx, (reacs, prods) = rxn

        ioprinter.obj('vspace')
        ioprinter.reading('PES electrion structure data')
        ioprinter.channel(chnl_idx, reacs, prods)

        # Set the TS name and channel model
        tsname = 'ts_{:g}_{:g}'.format(pes_idx+1, chnl_idx+1)

        # Obtain all of the species data
        if spc_model not in basis_energy_dct:
            basis_energy_dct[spc_model] = {}

        # Pass in full ts class
        chnl_infs, chn_basis_ene_dct = get_channel_data(
            reacs, prods, tsname,
            spc_dct, basis_energy_dct[spc_model],
            pes_model_dct_i, spc_model_dct_i,
            run_prefix, save_prefix)

        basis_energy_dct[spc_model].update(chn_basis_ene_dct)

        # Calculate the relative energies of all spc on the channel
        chnl_enes = sum_channel_enes(chnl_infs, ref_ene)

        # Write the mess strings for all spc on the channel
        mess_strs, dat_str_dct, written_labels = _make_channel_mess_strs(
            tsname, reacs, prods, spc_dct, label_dct, written_labels,
            chnl_infs, chnl_enes, spc_model_dct_i)

        # Append to full MESS strings
        [well_str, bi_str, ts_str] = mess_strs
        full_well_str += well_str
        full_bi_str += bi_str
        full_ts_str += ts_str
        full_dat_str_dct.update(dat_str_dct)

        ioprinter.debug_message('rxn', rxn)
        ioprinter.debug_message('enes', chnl_enes)
        ioprinter.debug_message('label dct', label_dct)
        ioprinter.debug_message('written labels', written_labels)

    # Combine all the reaction channel strings
    rxn_chan_str = '\n'.join([full_well_str, full_bi_str, full_ts_str])

    return rxn_chan_str, full_dat_str_dct, pes_ene_dct, conn_lst
Beispiel #12
0
def run(pes_rlst, ktp_tsk_lst, spc_dct, glob_dct, thy_dct, pes_mod_dct,
        spc_mod_dct, run_prefix, save_prefix):
    """ main driver for generation of full set of rate constants on a single PES
    """

    # --------------------------------------- #
    # LOOP OVER ALL OF THE SUBPES in PES_RLST #
    # --------------------------------------- #

    for pes_inf, rxn_lst in pes_rlst.items():

        # ---------------------------------------------- #
        # PREPARE INFORMATION TO PASS TO KTPDRIVER TASKS #
        # ---------------------------------------------- #

        # Set objects
        pes_formula, pes_idx, subpes_idx = pes_inf
        label_dct = None

        # Print PES Channels that are being run
        ioprinter.runlst(pes_inf, rxn_lst)

        # Set paths where files will be written and read
        mess_path = job_path(run_prefix,
                             'MESS',
                             'RATE',
                             pes_formula,
                             locs_idx=subpes_idx)

        # --------------------------------- #
        # RUN THE REQUESTED KTPDRIVER TASKS #
        # --------------------------------- #

        # Write the MESS file
        write_rate_tsk = parser.run.extract_task('write_mess', ktp_tsk_lst)
        if write_rate_tsk is not None:

            # Get all the info for the task
            tsk_key_dct = write_rate_tsk[-1]
            pes_mod = tsk_key_dct['kin_model']
            spc_mod = tsk_key_dct['spc_model']

            spc_dct, rxn_lst, label_dct = _process(pes_idx, rxn_lst,
                                                   ktp_tsk_lst, spc_mod_dct,
                                                   spc_mod, thy_dct, spc_dct,
                                                   glob_dct, run_prefix,
                                                   save_prefix)

            ioprinter.messpf('write_header')

            mess_inp_str, dats = ktproutines.rates.make_messrate_str(
                pes_idx, rxn_lst, pes_mod, spc_mod, spc_dct, thy_dct,
                pes_mod_dct, spc_mod_dct, label_dct, mess_path, run_prefix,
                save_prefix)

            autorun.write_input(mess_path,
                                mess_inp_str,
                                aux_dct=dats,
                                input_name='mess.inp')

        # Run mess to produce rates (currently nothing from tsk lst keys used)
        run_rate_tsk = parser.run.extract_task('run_mess', ktp_tsk_lst)
        if run_rate_tsk is not None:

            ioprinter.obj('vspace')
            ioprinter.obj('line_dash')
            ioprinter.running('MESS for the input file', mess_path)
            autorun.run_script(autorun.SCRIPT_DCT['messrate'], mess_path)

        # Fit rate output to modified Arrhenius forms, print in ChemKin format
        run_fit_tsk = parser.run.extract_task('run_fits', ktp_tsk_lst)
        if run_fit_tsk is not None:

            # Get all the info for the task
            tsk_key_dct = run_fit_tsk[-1]
            spc_mod = tsk_key_dct['spc_model']
            pes_mod = tsk_key_dct['kin_model']
            ratefit_dct = pes_mod_dct[pes_mod]['rate_fit']

            if label_dct is None:
                spc_dct, rxn_lst, label_dct = _process(pes_idx, rxn_lst,
                                                       ktp_tsk_lst,
                                                       spc_mod_dct, spc_mod,
                                                       thy_dct, spc_dct,
                                                       run_prefix, save_prefix)

            ioprinter.obj('vspace')
            ioprinter.obj('line_dash')
            ioprinter.info_message(
                'Fitting Rate Constants for PES to Functional Forms',
                newline=1)

            # Read and fit rates; write to ckin string
            ratefit_dct = pes_mod_dct[pes_mod]['rate_fit']
            ckin_dct = ratefit.fit.fit_ktp_dct(
                mess_path=mess_path,
                inp_fit_method=ratefit_dct['fit_method'],
                pdep_dct=ratefit_dct['pdep_fit'],
                arrfit_dct=ratefit_dct['arrfit_fit'],
                chebfit_dct=ratefit_dct['chebfit_fit'],
                troefit_dct=ratefit_dct['troefit_fit'],
                label_dct=label_dct,
                fit_temps=pes_mod_dct[pes_mod]['rate_temps'],
                fit_pressures=pes_mod_dct[pes_mod]['pressures'],
                fit_tunit=pes_mod_dct[pes_mod]['temp_unit'],
                fit_punit=pes_mod_dct[pes_mod]['pressure_unit'])

            # Write the header part
            ckin_dct.update(
                {'header': writer.ckin.model_header((spc_mod, ), spc_mod_dct)})

            ckin_path = output_path('CKIN')
            writer.ckin.write_rxn_file(ckin_dct, pes_formula, ckin_path)
Beispiel #13
0
def run(spc_rlst, therm_tsk_lst, pes_mod_dct, spc_mod_dct, spc_dct, run_prefix,
        save_prefix):
    """ main driver for thermo run
    """

    # Print Header fo
    ioprinter.info_message('Calculating Thermochem:')
    ioprinter.runlst(('SPC', 0, 0), spc_rlst)

    # ------------------------------------------------ #
    # PREPARE INFORMATION TO PASS TO THERMDRIVER TASKS #
    # ------------------------------------------------ #

    # Build a list of the species to calculate thermochem for loops below
    spc_mods = list(spc_mod_dct.keys())  # hack
    split_spc_lst = split_unstable_spc(spc_rlst, spc_dct,
                                       spc_mod_dct[spc_mods[0]], save_prefix)
    spc_queue = parser.rlst.spc_queue('spc', tuple(split_spc_lst.values())[0])

    # Build the paths [(messpf, nasa)], models and levels for each spc
    thm_paths = thermo_paths(spc_dct, spc_queue, spc_mods, run_prefix)

    # ----------------------------------- #
    # RUN THE REQUESTED THERMDRIVER TASKS #
    # ----------------------------------- #

    # Write and Run MESSPF inputs to generate the partition functions
    write_messpf_tsk = parser.run.extract_task('write_mess', therm_tsk_lst)
    if write_messpf_tsk is not None:

        ioprinter.messpf('write_header')

        spc_mods, pes_mod = parser.models.extract_models(write_messpf_tsk)

        for idx, spc_name in enumerate(spc_queue):
            print('write test {}'.format(spc_name))
            for spc_mod in spc_mods:
                messpf_inp_str = thmroutines.qt.make_messpf_str(
                    pes_mod_dct[pes_mod]['therm_temps'], spc_dct, spc_name,
                    pes_mod_dct[pes_mod], spc_mod_dct[spc_mod], run_prefix,
                    save_prefix)
                ioprinter.messpf('input_string')
                ioprinter.info_message(messpf_inp_str)
                autorun.write_input(thm_paths[idx][spc_mod][0],
                                    messpf_inp_str,
                                    input_name='pf.inp')

    # Run the MESSPF files that have been written
    run_messpf_tsk = parser.run.extract_task('run_mess', therm_tsk_lst)
    if run_messpf_tsk is not None:

        spc_mod, pes_mod = parser.models.extract_models(run_messpf_tsk)
        spc_mods = parser.models.split_model(spc_mod[0])

        ioprinter.messpf('run_header')
        for idx, spc_name in enumerate(spc_queue):

            _spc_mods, coeffs, operators = spc_mods

            # Run MESSPF for all requested models, combine the PFS at the end
            ioprinter.message('Run MESSPF: {}'.format(spc_name), newline=1)
            _pfs = []
            for spc_mod in _spc_mods:
                autorun.run_script(autorun.SCRIPT_DCT['messpf'],
                                   thm_paths[idx][spc_mod][0])
                _pfs.append(
                    pfrunner.mess.read_messpf(thm_paths[idx][spc_mod][0]))
            final_pf = pfrunner.mess.combine_pfs(_pfs, coeffs, operators)

            # need to clean thm path build
            tot_idx = len(spc_mods)
            spc_info = sinfo.from_dct(spc_dct[spc_name])
            spc_fml = automol.inchi.formula_string(spc_info[0])
            thm_prefix = [spc_fml, automol.inchi.inchi_key(spc_info[0])]
            thm_paths[idx]['final'] = (job_path(run_prefix,
                                                'MESS',
                                                'PF',
                                                thm_prefix,
                                                locs_idx=tot_idx),
                                       job_path(run_prefix,
                                                'THERM',
                                                'NASA',
                                                thm_prefix,
                                                locs_idx=tot_idx))
            pfrunner.mess.write_mess_output(fstring(
                spc_dct[spc_name]['inchi']),
                                            final_pf,
                                            thm_paths[idx]['final'][0],
                                            filename='pf.dat')

    # Use MESS partition functions to compute thermo quantities
    run_fit_tsk = parser.run.extract_task('run_fits', therm_tsk_lst)
    if run_fit_tsk is not None:

        spc_mods, pes_mod = parser.models.extract_models(run_fit_tsk)
        pes_mod_dct_i = pes_mod_dct[pes_mod]

        ioprinter.nasa('header')
        chn_basis_ene_dct = {}
        for idx, spc_name in enumerate(spc_queue):

            # Take species model and add it to the chn_basis_ene dct
            spc_mod = spc_mods[0]
            spc_mod_dct_i = spc_mod_dct[spc_mod]
            if spc_mod not in chn_basis_ene_dct:
                chn_basis_ene_dct[spc_mod] = {}

            # Get the reference scheme and energies (ref in different place)
            ref_scheme = pes_mod_dct_i['therm_fit']['ref_scheme']
            ref_enes = pes_mod_dct_i['therm_fit']['ref_enes']

            # Determine info about the basis species used in thermochem calcs
            basis_dct, uniref_dct = thmroutines.basis.prepare_refs(
                ref_scheme, spc_dct, [[spc_name, None]], run_prefix,
                save_prefix)

            # Get the basis info for the spc of interest
            spc_basis, coeff_basis = basis_dct[spc_name]

            # Get the energies for the spc and its basis
            ene_basis = []
            energy_missing = False
            for spc_basis_i in spc_basis:
                if spc_basis_i in chn_basis_ene_dct[spc_mod]:
                    ioprinter.message(
                        'Energy already found for basis species: ' +
                        spc_basis_i)
                    ene_basis.append(chn_basis_ene_dct[spc_mod][spc_basis_i])
                else:
                    ioprinter.message(
                        'Energy will be determined for basis species: ' +
                        spc_basis_i)
                    energy_missing = True
            if not energy_missing:
                pf_filesystems = filesys.models.pf_filesys(spc_dct[spc_name],
                                                           spc_mod_dct_i,
                                                           run_prefix,
                                                           save_prefix,
                                                           saddle=False)
                ene_spc = ene.read_energy(spc_dct[spc_name],
                                          pf_filesystems,
                                          spc_mod_dct_i,
                                          run_prefix,
                                          read_ene=True,
                                          read_zpe=True,
                                          saddle=False)
            else:
                ene_spc, ene_basis = thmroutines.basis.basis_energy(
                    spc_name, spc_basis, uniref_dct, spc_dct, spc_mod_dct_i,
                    run_prefix, save_prefix)
                for spc_basis_i, ene_basis_i in zip(spc_basis, ene_basis):
                    chn_basis_ene_dct[spc_mod][spc_basis_i] = ene_basis_i

            # Calculate and store the 0 K Enthalpy
            hf0k = thmroutines.heatform.calc_hform_0k(ene_spc,
                                                      ene_basis,
                                                      spc_basis,
                                                      coeff_basis,
                                                      ref_set=ref_enes)
            spc_dct[spc_name]['Hfs'] = [hf0k]

        # Write the NASA polynomials in CHEMKIN format
        ckin_nasa_str = ''
        ckin_path = output_path('CKIN')
        for idx, spc_name in enumerate(spc_queue):

            ioprinter.nasa('calculate', spc_name)

            # Write the header describing the models used in thermo calcs
            ckin_nasa_str += writer.ckin.model_header(spc_mods, spc_mod_dct)

            # Build and write the NASA polynomial in CHEMKIN-format string
            # Call dies if you haven't run "write mess" task
            ckin_nasa_str += thmroutines.nasapoly.build_polynomial(
                spc_name, spc_dct, thm_paths[idx]['final'][0],
                thm_paths[idx]['final'][1])
            ckin_nasa_str += '\n\n'

            print(ckin_nasa_str)
        nasa7_params_all = chemkin_io.parser.thermo.create_spc_nasa7_dct(
            ckin_nasa_str)
        # print('ckin_nasa_str test', ckin_nasa_str)
        ioprinter.info_message(
            'SPECIES           H(0 K)  H(298 K)  S(298 K)  Cp(300 K) Cp(500 K) Cp(1000 K) Cp(1500 K)\n'
        )
        ioprinter.info_message(
            '                 kcal/mol kcal/mol cal/(mol K) ... \n')
        for spc_name in nasa7_params_all:
            nasa7_params = nasa7_params_all[spc_name]
            whitespace = 18 - len(spc_name)
            h0 = spc_dct[spc_name]['Hfs'][0]
            h298 = mechanalyzer.calculator.thermo.enthalpy(
                nasa7_params, 298.15) / 1000.
            s298 = mechanalyzer.calculator.thermo.entropy(nasa7_params, 298.15)
            cp300 = mechanalyzer.calculator.thermo.heat_capacity(
                nasa7_params, 300)
            cp500 = mechanalyzer.calculator.thermo.heat_capacity(
                nasa7_params, 500)
            cp1000 = mechanalyzer.calculator.thermo.heat_capacity(
                nasa7_params, 1000)
            cp1500 = mechanalyzer.calculator.thermo.heat_capacity(
                nasa7_params, 1500)
            whitespace = whitespace * ' '
            ioprinter.info_message(
                '{}{}{:>7.2f}{:>9.2f}{:>9.2f}{:>9.2f}{:>9.2f}{:>9.2f}{:>9.2f}'.
                format(spc_name, whitespace, h0, h298, s298, cp300, cp500,
                       cp1000, cp1500))

        # Write all of the NASA polynomial strings
        writer.ckin.write_nasa_file(ckin_nasa_str, ckin_path)
def run(pes_rlst, spc_rlst,
        therm_tsk_lst,
        pes_mod_dct, spc_mod_dct,
        spc_dct,
        run_prefix, save_prefix):
    """ Executes all thermochemistry tasks.

        :param pes_rlst: species from PESs to run
            [(PES formula, PES idx, SUP-PES idx)
            (CHANNEL idx, (REACS, PRODS))
        :type pes_rlst: tuple(dict[str: dict])
        :param spc_rlst: lst of species to run
        :type spc_rlst: tuple(dict[str: dict])
        :param es_tsk_lst: list of the electronic structure tasks
            tuple(tuple(obj, tsk, keyword_dict))
        :type es_tsk_lst: tuple(tuple(str, str, dict))
        :param spc_dct: species information
            dict[spc_name: spc_information]
        :type spc_dct: dict[str:dict]
        :param glob_dct: global information for all species
            dict[spc_name: spc_information]
        :type glob_dct: dict[str: dict]
        :param thy_dct: all of the theory information
            dict[thy name: inf]
        :type thy_dct: dict[str:dict]
        :param run_prefix: root-path to the run-filesystem
        :type run_prefix: str
        :param save_prefix: root-path to the save-filesystem
        :type save_prefix: str
    """

    # Print Header
    ioprinter.info_message('Calculating Thermochem:')
    ioprinter.runlst(('SPC', 0, 0), spc_rlst)

    # ------------------------------------------------ #
    # PREPARE INFORMATION TO PASS TO THERMDRIVER TASKS #
    # ------------------------------------------------ #

    # Build a list of the species to calculate thermochem for loops below
    spc_mods = list(spc_mod_dct.keys())  # hack
    spc_mod_dct_i = spc_mod_dct[spc_mods[0]]
    split_rlst = split_unstable_full(
        pes_rlst, spc_rlst, spc_dct, spc_mod_dct_i, save_prefix)
    spc_queue = parser.rlst.spc_queue(
        tuple(split_rlst.values())[0], 'SPC')

    # Build the paths [(messpf, nasa)], models and levels for each spc
    thm_paths = thermo_paths(spc_dct, spc_queue, spc_mods, run_prefix)

    # ----------------------------------- #
    # RUN THE REQUESTED THERMDRIVER TASKS #
    # ----------------------------------- #

    # Write and Run MESSPF inputs to generate the partition functions
    write_messpf_tsk = parser.run.extract_task('write_mess', therm_tsk_lst)
    if write_messpf_tsk is not None:

        ioprinter.messpf('write_header')

        spc_mods, pes_mod = parser.models.extract_models(write_messpf_tsk)

        for idx, spc_name in enumerate(spc_queue):
            print('write test {}'.format(spc_name))
            for spc_mod in spc_mods:
                messpf_inp_str = thmroutines.qt.make_messpf_str(
                    pes_mod_dct[pes_mod]['therm_temps'],
                    spc_dct, spc_name,
                    pes_mod_dct[pes_mod], spc_mod_dct[spc_mod],
                    run_prefix, save_prefix)
                ioprinter.messpf('input_string')
                ioprinter.info_message(messpf_inp_str)
                autorun.write_input(
                    thm_paths[idx][spc_mod][0], messpf_inp_str,
                    input_name='pf.inp')

    # Run the MESSPF files that have been written
    run_messpf_tsk = parser.run.extract_task('run_mess', therm_tsk_lst)
    if run_messpf_tsk is not None:

        spc_mod, pes_mod = parser.models.extract_models(run_messpf_tsk)
        spc_mods = parser.models.split_model(spc_mod[0])

        ioprinter.messpf('run_header')
        for idx, spc_name in enumerate(spc_queue):

            _spc_mods, coeffs, operators = spc_mods

            # Run MESSPF for all requested models, combine the PFS at the end
            ioprinter.message('Run MESSPF: {}'.format(spc_name), newline=1)
            _pfs = []
            for spc_mod in _spc_mods:
                autorun.run_script(
                   autorun.SCRIPT_DCT['messpf'],
                   thm_paths[idx][spc_mod][0])
                _pfs.append(
                    reader.mess.messpf(thm_paths[idx][spc_mod][0]))
            final_pf = thermfit.pf.combine(_pfs, coeffs, operators)

            # need to clean thm path build
            tdx = len(spc_mods)
            spc_info = sinfo.from_dct(spc_dct[spc_name])
            spc_fml = automol.inchi.formula_string(spc_info[0])
            thm_prefix = [spc_fml, automol.inchi.inchi_key(spc_info[0])]
            thm_paths[idx]['final'] = (
                job_path(run_prefix, 'MESS', 'PF', thm_prefix, locs_idx=tdx),
                job_path(run_prefix, 'THERM', 'NASA', thm_prefix, locs_idx=tdx)
            )
            writer.mess.output(
                fstring(spc_dct[spc_name]['inchi']),
                final_pf, thm_paths[idx]['final'][0],
                filename='pf.dat')

    # Use MESS partition functions to compute thermo quantities
    run_fit_tsk = parser.run.extract_task('run_fits', therm_tsk_lst)
    if run_fit_tsk is not None:

        spc_mods, pes_mod = parser.models.extract_models(run_fit_tsk)
        pes_mod_dct_i = pes_mod_dct[pes_mod]

        ioprinter.nasa('header')
        chn_basis_ene_dct = {}
        for idx, spc_name in enumerate(spc_queue):

            # Take species model and add it to the chn_basis_ene dct
            spc_mod = spc_mods[0]
            spc_mod_dct_i = spc_mod_dct[spc_mod]
            if spc_mod not in chn_basis_ene_dct:
                chn_basis_ene_dct[spc_mod] = {}

            # Get the reference scheme and energies (ref in different place)
            ref_scheme = pes_mod_dct_i['therm_fit']['ref_scheme']
            ref_enes = pes_mod_dct_i['therm_fit']['ref_enes']

            # Determine info about the basis species used in thermochem calcs
            basis_dct, uniref_dct = thermfit.prepare_refs(
                ref_scheme, spc_dct, (spc_name,))

            # Get the basis info for the spc of interest
            spc_basis, coeff_basis = basis_dct[spc_name]

            # Get the energies for the spc and its basis
            ene_basis = []
            energy_missing = False
            for spc_basis_i in spc_basis:
                if spc_basis_i in chn_basis_ene_dct[spc_mod]:
                    ioprinter.message(
                        'Energy already found for basis species: '
                        + spc_basis_i)
                    ene_basis.append(chn_basis_ene_dct[spc_mod][spc_basis_i])
                else:
                    ioprinter.message(
                        'Energy will be determined for basis species: '
                        + spc_basis_i)
                    energy_missing = True
            if not energy_missing:
                pf_filesystems = filesys.models.pf_filesys(
                    spc_dct[spc_name], spc_mod_dct_i,
                    run_prefix, save_prefix, saddle=False)
                ene_spc = ene.read_energy(
                    spc_dct[spc_name], pf_filesystems, spc_mod_dct_i,
                    run_prefix, read_ene=True, read_zpe=True, saddle=False)
            else:
                ene_spc, ene_basis = thmroutines.basis.basis_energy(
                    spc_name, spc_basis, uniref_dct, spc_dct,
                    spc_mod_dct_i,
                    run_prefix, save_prefix)
                for spc_basis_i, ene_basis_i in zip(spc_basis, ene_basis):
                    chn_basis_ene_dct[spc_mod][spc_basis_i] = ene_basis_i

            # Calculate and store the 0 K Enthalpy
            hf0k = thermfit.heatform.calc_hform_0k(
                ene_spc, ene_basis, spc_basis, coeff_basis, ref_set=ref_enes)
            spc_dct[spc_name]['Hfs'] = [hf0k]

        # Write the NASA polynomials in CHEMKIN format
        ckin_nasa_str = ''
        ckin_path = output_path('CKIN')
        for idx, spc_name in enumerate(spc_queue):

            ioprinter.nasa('calculate', spc_name)

            # Write the header describing the models used in thermo calcs
            ckin_nasa_str += writer.ckin.model_header(spc_mods, spc_mod_dct)

            # Build and write the NASA polynomial in CHEMKIN-format string
            # Call dies if you haven't run "write mess" task
            ckin_nasa_str += thmroutines.nasapoly.build_polynomial(
                spc_name, spc_dct,
                thm_paths[idx]['final'][0], thm_paths[idx]['final'][1])
            ckin_nasa_str += '\n\n'
        print('CKIN NASA STR\n')
        print(ckin_nasa_str)

        nasa7_params_all = chemkin_io.parser.thermo.create_spc_nasa7_dct(
            ckin_nasa_str)
        ioprinter.info_message(
            'SPECIES\t\tH(0 K)[kcal/mol]\tH(298 K)[kcal/mol]\t' +
            'S(298 K)[cal/mol K]\n')
        for spc_name in nasa7_params_all:
            nasa7_params = nasa7_params_all[spc_name]
            ht0 = spc_dct[spc_name]['Hfs'][0]
            ht298 = mechanalyzer.calculator.thermo.enthalpy(
                nasa7_params, 298.15)
            st298 = mechanalyzer.calculator.thermo.entropy(
                nasa7_params, 298.15)
            ioprinter.info_message(
                '{}\t{:3.2f}\t{:3.2f}\t{:3.2f}'.format(
                    spc_name, ht0, ht298/1000., st298))

        # Write all of the NASA polynomial strings
        writer.ckin.write_nasa_file(ckin_nasa_str, ckin_path)
Beispiel #15
0
def run(pes_rlst, ktp_tsk_lst, spc_dct, glob_dct, pes_mod_dct, spc_mod_dct,
        run_prefix, save_prefix):
    """ Executes all kinetics tasks.

        :param pes_rlst: species from PESs to run
            [(PES formula, PES idx, SUP-PES idx)
            (CHANNEL idx, (REACS, PRODS))
        :type pes_rlst: tuple(dict[str: dict])
        :param spc_rlst: lst of species to run
        :type spc_rlst: tuple(dict[str: dict])
        :param es_tsk_lst: list of the electronic structure tasks
            tuple(tuple(obj, tsk, keyword_dict))
        :type es_tsk_lst: tuple(tuple(str, str, dict))
        :param spc_dct: species information
            dict[spc_name: spc_information]
        :type spc_dct: dict[str:dict]
        :param glob_dct: global information for all species
            dict[spc_name: spc_information]
        :type glob_dct: dict[str: dict]
        :param thy_dct: all of the theory information
            dict[thy name: inf]
        :type thy_dct: dict[str:dict]
        :param run_prefix: root-path to the run-filesystem
        :type run_prefix: str
        :param save_prefix: root-path to the save-filesystem
        :type save_prefix: str
    """

    # --------------------------------------- #
    # LOOP OVER ALL OF THE SUBPES in PES_RLST #
    # --------------------------------------- #

    for pes_inf, rxn_lst in pes_rlst.items():

        # ---------------------------------------------- #
        # PREPARE INFORMATION TO PASS TO KTPDRIVER TASKS #
        # ---------------------------------------------- #

        # Set objects
        pes_formula, pes_idx, subpes_idx = pes_inf
        label_dct = None

        # Print PES Channels that are being run
        ioprinter.runlst(pes_inf, rxn_lst)

        # Set paths where files will be written and read
        mess_path = job_path(run_prefix,
                             'MESS',
                             'RATE',
                             pes_formula,
                             locs_idx=subpes_idx)

        # --------------------------------- #
        # RUN THE REQUESTED KTPDRIVER TASKS #
        # --------------------------------- #

        # Write the MESS file
        write_rate_tsk = parser.run.extract_task('write_mess', ktp_tsk_lst)
        if write_rate_tsk is not None:

            # Get all the info for the task
            tsk_key_dct = write_rate_tsk[-1]
            pes_mod = tsk_key_dct['kin_model']
            spc_mod = tsk_key_dct['spc_model']

            spc_dct, rxn_lst, instab_chnls, label_dct = _process(
                pes_idx, rxn_lst, ktp_tsk_lst, spc_mod_dct, spc_mod, spc_dct,
                glob_dct, run_prefix, save_prefix)

            ioprinter.messpf('write_header')

            # Doesn't give full string
            mess_inp_str, dats = ktproutines.rates.make_messrate_str(
                pes_idx,
                rxn_lst,
                pes_mod,
                spc_mod,
                spc_dct,
                pes_mod_dct,
                spc_mod_dct,
                instab_chnls,
                label_dct,
                mess_path,
                run_prefix,
                save_prefix,
                make_lump_well_inp=tsk_key_dct['lump_wells'])

            autorun.write_input(mess_path,
                                mess_inp_str,
                                aux_dct=dats,
                                input_name='mess.inp')

        # Run mess to produce rates (currently nothing from tsk lst keys used)
        run_rate_tsk = parser.run.extract_task('run_mess', ktp_tsk_lst)
        if run_rate_tsk is not None:

            ioprinter.obj('vspace')
            ioprinter.obj('line_dash')
            ioprinter.running('MESS for the input file', mess_path)
            autorun.run_script(autorun.SCRIPT_DCT['messrate'], mess_path)

        # Fit rate output to modified Arrhenius forms, print in ChemKin format
        run_fit_tsk = parser.run.extract_task('run_fits', ktp_tsk_lst)
        if run_fit_tsk is not None:

            # Get all the info for the task
            tsk_key_dct = run_fit_tsk[-1]
            spc_mod = tsk_key_dct['spc_model']
            pes_mod = tsk_key_dct['kin_model']
            ratefit_dct = pes_mod_dct[pes_mod]['rate_fit']

            if label_dct is None:
                spc_dct, rxn_lst, _, label_dct = _process(
                    pes_idx, rxn_lst, ktp_tsk_lst, spc_mod_dct, spc_mod,
                    spc_dct, glob_dct, run_prefix, save_prefix)

            ioprinter.obj('vspace')
            ioprinter.obj('line_dash')
            ioprinter.info_message(
                'Fitting Rate Constants for PES to Functional Forms',
                newline=1)

            # Read and fit rates; write to ckin string
            ratefit_dct = pes_mod_dct[pes_mod]['rate_fit']
            ckin_dct = ratefit.fit.fit_ktp_dct(
                mess_path=mess_path,
                inp_fit_method=ratefit_dct['fit_method'],
                pdep_dct=ratefit_dct['pdep_fit'],
                arrfit_dct=ratefit_dct['arrfit_fit'],
                chebfit_dct=ratefit_dct['chebfit_fit'],
                troefit_dct=ratefit_dct['troefit_fit'],
                label_dct=label_dct,
                fit_temps=pes_mod_dct[pes_mod]['rate_temps'],
                fit_pressures=pes_mod_dct[pes_mod]['pressures'],
                fit_tunit=pes_mod_dct[pes_mod]['temp_unit'],
                fit_punit=pes_mod_dct[pes_mod]['pressure_unit'])

            # Write the header part
            ckin_dct.update(
                {'header': writer.ckin.model_header((spc_mod, ), spc_mod_dct)})

            ckin_path = output_path('CKIN')
            writer.ckin.write_rxn_file(ckin_dct, pes_formula, ckin_path)