}) cp = pd.get_dummies(df["cp"]) df = pd.concat([df, cp], axis=1) df["slope"] = df["slope"].map({1: "upsloping", 2: "flat", 3: "downsloping"}) slope = pd.get_dummies(df["slope"]) df = pd.concat([df, slope], axis=1) data = df.loc[:, [ "normal", "fixed_defect", "reversible defect", "typical angina", "atypical angina", "non-anginal pain", "asymptomatic", "upsloping", "flat", "downsloping", "exang", "ca", "labels" ]] features = data.columns.tolist() features.remove("labels") heart = ml.ai(data=df, features=features, target="labels", test_size=0.2) import pickle pickle.dump(heart.model, open("logregheart.pkl", "wb")) # dump python file into pickle file # you determine here # pkl file appears in the same directory as this python file # just recall the pickle file back into one name ( which will be model ) # you can test with myheart.coef_ # since they are in the same directory , ypu don't need to direct to it # just call him by his name # although you gotta figure out how to call the other directory with . or .. myheart = pickle.load(open("logregheart.pkl", "rb"))
thal = pd.get_dummies(df["thal"]) thal.columns = ["normal", "fixed defect", "reversable defect"] df = pd.concat([df, thal], axis=1) # cp df["cp"] = df["cp"].map({ 1: "typical angina", 2: "atypical angina", 3: "non-anginal pain", 4: "asymptomatic" }) cp = pd.get_dummies(df["cp"]) df = pd.concat([df, cp], axis=1) # slope df["slope"] = df["slope"].map({1: "upsloping", 2: "flat", 3: "downsloping"}) slope = pd.get_dummies(df["slope"]) df = pd.concat([df, slope], axis=1) data = df.loc[:, [ "normal", "fixed defect", "reversable defect", "typical angina", "atypical angina", "non-anginal pain", "asymptomatic", "upsloping", "flat", "downsloping", "exang", "ca", "labels" ]] features = data.columns.tolist() features.remove("labels") params = {"dt": {"max_depth": 3}, "lr": {"penalty": "l2"}} heart = ml.ai(data=df, features=features, target="labels", test_size=0.2, model="lr", params=params)