Beispiel #1
0
def broadcast_from_last_to_first_pipeline_stage(size, dtype, tensor=None):
    """Broadcast tensor values from last stage into the first stage."""

    is_last_stage = mpu.is_pipeline_last_stage()
    is_first_stage = mpu.is_pipeline_first_stage()
    # If first stage and last state are the same, then there is no
    # pipeline parallelism and no need to communicate.
    if is_first_stage and is_last_stage:
        return tensor
    # Only first and last stage pipeline stages need to be involved.
    if is_last_stage or is_first_stage:
        if is_last_stage:
            _is_cuda_contiguous(tensor)
        else:
            tensor = torch.empty(size,
                                 dtype=dtype,
                                 device=torch.cuda.current_device())
        src = mpu.get_pipeline_model_parallel_last_rank()
        group = mpu.get_embedding_group()
        # Broadcast from last stage into the first stage.
        torch.distributed.broadcast(tensor, src, group)
    else:
        tensor = None

    return tensor
Beispiel #2
0
 def initialize_word_embeddings(self, init_method_normal):
     args = get_args()
     if not self.share_word_embeddings:
         raise Exception('initialize_word_embeddings() was called but '
                         'share_word_embeddings is false')
     # Parameters are shared between the word embeddings layer, and the
     # heads at the end of the model. In a pipelined setup with more than
     # one stage, the initial embedding layer and the head are on different
     # workers, so we do the following:
     # 1. Create a second copy of word_embeddings on the last stage, with
     #    initial parameters of 0.0.
     # 2. Do an all-reduce between the first and last stage to ensure that
     #    the two copies of word_embeddings start off with the same
     #    parameter values.
     # 3. In the training loop, before an all-reduce between the grads of
     #    the two word_embeddings layers to ensure that every applied weight
     #    update is the same on both stages.
     if mpu.is_pipeline_last_stage():
         if not mpu.is_pipeline_first_stage():
             self._word_embeddings_for_head_key = 'word_embeddings_for_head'
             # If first and last stages are different, set word_embeddings
             # weights to 0 here, then copy first stage's weights using
             # all_reduce below.
             self.word_embeddings = mpu.VocabParallelEmbedding(
                 args.padded_vocab_size,
                 args.hidden_size,
                 init_method=init_method_normal(args.init_method_std))
             self.word_embeddings.weight.data.fill_(0)
             self.word_embeddings.weight.shared = True
     # Ensure that first and last stages have the same initial parameter
     # values.
     if mpu.is_pipeline_first_stage() or mpu.is_pipeline_last_stage():
         torch.distributed.all_reduce(self.word_embeddings_weight().data,
                                      group=mpu.get_embedding_group())
Beispiel #3
0
def copy_from_last_to_first_pipeline_stage(size, dtype, tensor=None):
    """Copy tensor values from last stage into the first stage.
    Note that the input tensor is updated in place."""

    is_last_stage = mpu.is_pipeline_last_stage()
    is_first_stage = mpu.is_pipeline_first_stage()
    # If first stage and last state are the same, then there is no
    # pipeline parallelism and no need to communicate.
    if is_first_stage and is_last_stage:
        return
    # Only first and last stage pipeline stages need to be involved.
    if is_last_stage or is_first_stage:
        _is_cuda(tensor)
        is_contiguous = tensor.is_contiguous()
        src = mpu.get_pipeline_model_parallel_last_rank()
        group = mpu.get_embedding_group()
        if is_contiguous:
            tensor_ = tensor
        else:
            if is_last_stage:
                tensor_ = tensor.contiguous()
            else:
                tensor_ = torch.empty(size,
                                      dtype=dtype,
                                      device=torch.cuda.current_device())
        # Broadcast from last stage into the first stage.
        torch.distributed.broadcast(tensor_, src, group)
        # Update the first stage tensor
        if is_first_stage and not is_contiguous:
            tensor[...] = tensor_
Beispiel #4
0
    def initialize_word_embeddings(self, init_method_normal):
        args = get_args()
        if not self.share_word_embeddings:
            raise Exception('initialize_word_embeddings() was called but '
                            'share_word_embeddings is false')

        # This function just initializes the word embeddings in the final stage
        # when we are using pipeline parallelism. If we aren't using pipeline
        # parallelism there is nothing to do.
        if args.pipeline_model_parallel_size == 1:
            return

        # Parameters are shared between the word embeddings layer, and the
        # heads at the end of the model. In a pipelined setup with more than
        # one stage, the initial embedding layer and the head are on different
        # workers, so we do the following:
        # 1. Create a second copy of word_embeddings on the last stage, with
        #    initial parameters of 0.0.
        # 2. Do an all-reduce between the first and last stage to ensure that
        #    the two copies of word_embeddings start off with the same
        #    parameter values.
        # 3. In the training loop, before an all-reduce between the grads of
        #    the two word_embeddings layers to ensure that every applied weight
        #    update is the same on both stages.
        if mpu.is_pipeline_last_stage():
            assert not mpu.is_pipeline_first_stage()
            self._word_embeddings_for_head_key = 'word_embeddings_for_head'
            # set word_embeddings weights to 0 here, then copy first
            # stage's weights using all_reduce below.
            self.word_embeddings = mpu.VocabParallelEmbedding(
                args.padded_vocab_size,
                args.hidden_size,
                init_method=init_method_normal(args.init_method_std))
            self.word_embeddings.weight.data.fill_(0)
            self.word_embeddings.weight.shared = True

        # Ensure that first and last stages have the same initial parameter
        # values.
        if torch.distributed.is_initialized():
            if mpu.is_pipeline_first_stage() or mpu.is_pipeline_last_stage():
                torch.distributed.all_reduce(
                    self.word_embeddings_weight().data,
                    group=mpu.get_embedding_group())
        else:
            print("WARNING! Distributed processes aren't initialized, so "
                  "word embeddings in the last layer are not initialized. "
                  "If you are just manipulating a model this is fine, but "
                  "this needs to be handled manually. If you are training "
                  "something is definitely wrong.")
def sample_sequence_batch(model,
                          context_tokens,
                          context_lengths,
                          attention_mask,
                          position_ids,
                          maxlen=None,
                          type_ids=None):

    args = get_args()
    tokenizer = get_tokenizer()

    model.eval()
    with torch.no_grad():
        context_length = context_lengths.min().item()
        eos_id = tokenizer.eod

        counter = 0
        org_context_length = context_length

        layer_past = None
        batch_size = context_tokens.size(0)
        is_done = torch.zeros([batch_size]).byte().cuda()
        tokens = context_tokens
        if maxlen is None:
            maxlen = args.seq_length - 1
            if maxlen > (org_context_length + args.out_seq_length):
                maxlen = org_context_length + args.out_seq_length

        lengths = torch.ones([batch_size]).long().cuda() * maxlen

        while context_length <= (maxlen):
            if args.recompute:
                output = forward_step(model,
                                      tokens,
                                      position_ids,
                                      attention_mask,
                                      tokentype_ids=type_ids,
                                      forward_method_parallel_output=False)
                if mpu.is_pipeline_last_stage():
                    assert output is not None
                    logits = output[:, context_length - 1, :]
            else:
                types2use = None
                if counter == 0:
                    tokens2use = tokens[:, :context_length]
                    positions2use = position_ids[:, :context_length]
                    if type_ids is not None:
                        types2use = type_ids[:, :context_length]
                else:
                    tokens2use = tokens[:, context_length - 1].view(
                        batch_size, -1)
                    positions2use = position_ids[:, context_length - 1].view(
                        batch_size, -1)
                    if type_ids is not None:
                        types2use = type_ids[:, context_length - 1].view(
                            batch_size, -1)
                output, layer_past = forward_step(
                    model,
                    tokens2use,
                    positions2use,
                    attention_mask,
                    layer_past=layer_past,
                    get_key_value=True,
                    tokentype_ids=types2use,
                    forward_method_parallel_output=False)
                if mpu.is_pipeline_last_stage():
                    assert output is not None
                    logits = output[:, -1].view(batch_size, -1).contiguous()

            if mpu.is_pipeline_last_stage():
                if args.greedy:
                    prev = torch.argmax(logits, dim=-1).view(-1)
                else:
                    logits = logits.float()
                    logits /= args.temperature
                    logits = top_k_logits(logits,
                                          top_k=args.top_k,
                                          top_p=args.top_p)
                    log_probs = F.softmax(logits, dim=-1)
                    prev = torch.multinomial(log_probs, num_samples=1).view(-1)

                started = context_lengths <= context_length

                new_tokens = switch(tokens[:, context_length].view(-1), prev,
                                    started)
                tokens[:, context_length] = new_tokens
                src = mpu.get_pipeline_model_parallel_last_rank()
                group = mpu.get_embedding_group()
                torch.distributed.broadcast(new_tokens, src, group)

                done_token = (prev == eos_id).byte() & started.byte()
                just_finished = (done_token & ~is_done).bool()
                lengths[just_finished.view(-1)] = context_length
                is_done = is_done | done_token

                done = torch.all(is_done)
                src = mpu.get_pipeline_model_parallel_last_rank()
                group = mpu.get_pipeline_model_parallel_group()
                torch.distributed.broadcast(done, src, group)
                yield tokens, lengths

            else:
                if mpu.is_pipeline_first_stage():
                    src = mpu.get_pipeline_model_parallel_last_rank()
                    group = mpu.get_embedding_group()
                    new_tokens = torch.empty_like(tokens[:, context_length])
                    torch.distributed.broadcast(new_tokens, src, group)
                    tokens[:, context_length] = new_tokens
                    yield tokens, None
                else:
                    yield None, None

                done = torch.cuda.ByteTensor([0])
                src = mpu.get_pipeline_model_parallel_last_rank()
                group = mpu.get_pipeline_model_parallel_group()
                torch.distributed.broadcast(done, src, group)

            context_length += 1
            counter += 1
            if done:
                break
Beispiel #6
0
def train_step(forward_step_func, data_iterator, model, optimizer,
               lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
    optimizer.zero_grad()

    if mpu.get_pipeline_model_parallel_world_size() > 1:
        losses_reduced = forward_backward_pipelining(forward_step_func,
                                                     data_iterator, model,
                                                     optimizer, timers)
    else:
        losses_reduced = forward_backward_no_pipelining(
            forward_step_func, data_iterator, model, optimizer, timers)

    # All-reduce if needed.
    if args.DDP_impl == 'local':
        timers('backward-params-all-reduce').start()
        model.allreduce_params(reduce_after=False,
                               fp32_allreduce=args.fp32_allreduce)
        timers('backward-params-all-reduce').stop()

    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
    timers('backward-embedding-all-reduce').start()
    if (mpu.is_pipeline_first_stage() or mpu.is_pipeline_last_stage()) and \
            mpu.get_pipeline_model_parallel_world_size() > 1:
        unwrapped_model = model
        while isinstance(unwrapped_model, (torchDDP, LocalDDP, FP16Module)):
            unwrapped_model = unwrapped_model.module

        if unwrapped_model.share_word_embeddings:
            word_embeddings_weight = unwrapped_model.word_embeddings_weight()
            torch.distributed.all_reduce(word_embeddings_weight.grad,
                                         group=mpu.get_embedding_group())
    timers('backward-embedding-all-reduce').stop()

    # Update parameters.
    timers('optimizer').start()
    update_successfull = optimizer.step()
    timers('optimizer').stop()

    # Update learning rate.
    if update_successfull:
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
        lr_scheduler.step(increment=increment)
        skipped_iter = 0
    else:
        skipped_iter = 1

    if mpu.is_pipeline_last_stage():
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
            loss_reduced[key] = sum(losses_reduced_for_key) / len(
                losses_reduced_for_key)
        return loss_reduced, skipped_iter
    return {}, skipped_iter
Beispiel #7
0
def train_step(forward_step_func, data_iterator, model, optimizer,
               lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
    if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_local_ddp:
        for partition in model:
            partition.zero_grad_buffer()
    optimizer.zero_grad()

    forward_backward_func = get_forward_backward_func()
    losses_reduced = forward_backward_func(forward_step_func,
                                           data_iterator,
                                           model,
                                           optimizer,
                                           timers,
                                           forward_only=False)

    # Empty unused memory
    if args.empty_unused_memory_level >= 1:
        torch.cuda.empty_cache()

    # All-reduce if needed.
    if args.DDP_impl == 'local':
        timers('backward-params-all-reduce').start()
        for model_module in model:
            model_module.allreduce_gradients()
        timers('backward-params-all-reduce').stop()

    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
    timers('backward-embedding-all-reduce').start()
    if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
            mpu.get_pipeline_model_parallel_world_size() > 1:
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            unwrapped_model = model[0]
        elif mpu.is_pipeline_last_stage(ignore_virtual=True):
            unwrapped_model = model[-1]
        else:  # We do not support the interleaved schedule for T5 yet.
            unwrapped_model = model[0]
        unwrapped_model = unwrap_model(unwrapped_model,
                                       (torchDDP, LocalDDP, Float16Module))

        if unwrapped_model.share_word_embeddings:
            word_embeddings_weight = unwrapped_model.word_embeddings_weight()
            if args.DDP_impl == 'local':
                grad = word_embeddings_weight.main_grad
            else:
                grad = word_embeddings_weight.grad
            torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())

    # All-reduce position_embeddings grad across first (encoder) and split (decoder)
    # stages to ensure that position embeddings parameters stay in sync.
    # This should only run for T5 models with pipeline parallelism
    if mpu.is_rank_in_position_embedding_group() and \
            mpu.get_pipeline_model_parallel_world_size() > 1 and \
            args.pipeline_model_parallel_split_rank is not None:
        unwrapped_model = model[0]
        unwrapped_model = unwrap_model(unwrapped_model,
                                       (torchDDP, LocalDDP, Float16Module))
        assert args.DDP_impl == 'local', \
            'T5 model is only supported with local DDP mode'
        grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
        torch.distributed.all_reduce(grad,
                                     group=mpu.get_position_embedding_group())
    timers('backward-embedding-all-reduce').stop()

    # Update parameters.
    timers('optimizer').start()
    update_successful, grad_norm, num_zeros_in_grad = optimizer.step()
    timers('optimizer').stop()

    # Update learning rate.
    if update_successful:
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
        lr_scheduler.step(increment=increment)
        skipped_iter = 0
    else:
        skipped_iter = 1

    # Empty unused memory
    if args.empty_unused_memory_level >= 2:
        torch.cuda.empty_cache()

    if mpu.is_pipeline_last_stage(ignore_virtual=True):
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
            loss_reduced[key] = sum(losses_reduced_for_key) / len(
                losses_reduced_for_key)
        return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
    return {}, skipped_iter, grad_norm, num_zeros_in_grad
Beispiel #8
0
def train_step(forward_step_func, data_iterator, model, optimizer,
               lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
    if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_ddp:
        for partition in model:
            partition.zero_grad_buffer()
    else:
        optimizer.zero_grad()

    forward_backward_func = get_forward_backward_func()
    losses_reduced = forward_backward_func(forward_step_func,
                                           data_iterator,
                                           model,
                                           optimizer,
                                           timers,
                                           forward_only=False)

    # All-reduce if needed.
    if args.DDP_impl == 'local':
        timers('backward-params-all-reduce').start()
        for model_module in model:
            model_module.allreduce_gradients()
        timers('backward-params-all-reduce').stop()

    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
    timers('backward-embedding-all-reduce').start()
    if (mpu.is_pipeline_first_stage(ignore_virtual=True) or
        mpu.is_pipeline_last_stage(ignore_virtual=True)) and \
            mpu.get_pipeline_model_parallel_world_size() > 1:
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            unwrapped_model = model[0]
        elif mpu.is_pipeline_last_stage(ignore_virtual=True):
            unwrapped_model = model[-1]
        unwrapped_model = unwrap_model(unwrapped_model,
                                       (torchDDP, LocalDDP, Float16Module))

        if unwrapped_model.share_word_embeddings:
            word_embeddings_weight = unwrapped_model.word_embeddings_weight()
            if args.DDP_impl == 'local':
                grad = word_embeddings_weight.main_grad
            else:
                grad = word_embeddings_weight.grad
            torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
    timers('backward-embedding-all-reduce').stop()

    # Update parameters.
    timers('optimizer').start()
    update_successful, grad_norm, num_zeros_in_grad = optimizer.step()
    timers('optimizer').stop()

    # Update learning rate.
    if update_successful:
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
        lr_scheduler.step(increment=increment)
        skipped_iter = 0
    else:
        skipped_iter = 1

    if mpu.is_pipeline_last_stage(ignore_virtual=True):
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
            loss_reduced[key] = sum(losses_reduced_for_key) / len(
                losses_reduced_for_key)
        return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
    return {}, skipped_iter, grad_norm, num_zeros_in_grad