def _generate_mesh(geojson_filename, action, dataset): msh_filename = os.path.splitext(geojson_filename)[0] + '.msh' if action in ('update', 'download') or not os.path.exists(msh_filename): geo_filename = os.path.splitext(geojson_filename)[0] + '.geo' mesh.main(geojson_filename, geo_filename) subprocess.call(['gmsh', '-2', '-format', 'msh2', geo_filename]) return msh_filename
def get_images(): clear_folder(datasetPath + "images") clear_folder(datasetPath + "projections") try: uploaded_files = request.files.getlist("file[]") for idx, file in enumerate(uploaded_files): file.save(dst=datasetPath + "images/" + file.filename + ".jpg") camera.main(datasetPath) pmvs.main(datasetPath) mesh.main("expansion_pointcloud.ply") print('DONE') except: print(exc_info()) return jsonify({"message": "fail"}) return jsonify({"message": "done"})
def main(): mirror = False cam = cv2.VideoCapture(0) while True: ret_val, img = cam.read() if mirror: img = cv2.flip(img, 1) img = mesh.main("img", sys.argv[1], sys.argv[2]) cv2.imshow('web', img) if cv2.waitKey(1) == 27: break # esc to quit cv2.destroyAllWindows()
def runn(mode, character, crop_mode): if mode == 'vert': out_vert.main(character) if mode == 'repose': repose.main(character) if mode == 'mesh': mesh.main(character) if mode == 'crop': extractor.main(character, crop_mode) if mode == 'convert': convert.main(character) if mode == 'comp': replacer.main(character) if mode == 'swap': fswap.main(character) if mode == 'train': train.main(character)
def vol_to_grids(vol_ffn, grid_config, vol_dbz_offset): #refl cappi index #5 = 2.5km cappi_index = 5 #read radar radar = pyart.aux_io.read_odim_h5(vol_ffn, file_field_names=True) try: #check if DBZH_CLEAN is present refl_field = radar.fields['DBZH_CLEAN']['data'] except: #run clutter filtering if DBZH_CLEAN is missing refl_field, _ = clutter.main(radar, [], 'DBZH') #run range filtering R, A = np.meshgrid(radar.range['data']/1000, radar.azimuth['data']) ma_refl_field = np.ma.masked_where(np.logical_or(R<10, R>120), refl_field.copy()) radar.add_field_like('DBZH', 'MA_DBZH_CLEAN', ma_refl_field, replace_existing=True) #temp data <-- get from ACCESS-R archive temp_data = mesh.temperature_profile_access(radar) #grid grid = pyart.map.grid_from_radars( radar, grid_shape = grid_config['GRID_SHAPE'], grid_limits = grid_config['GRID_LIMITS'], roi_func = 'constant', constant_roi = grid_config['GRID_ROI'], weighting_function = 'Barnes2', fields = ['MA_DBZH_CLEAN']) #extract data and apply refl offset refl_grid = grid.fields['MA_DBZH_CLEAN']['data'] - vol_dbz_offset alt_vec = grid.z['data'] #calculate refl field REFL = refl_grid[cappi_index,:,:] REFL_meta = {'units': 'dBZ', 'long_name': 'Horizontal Reflectivity Factor', 'standard_name': 'reflectivity', 'comments': 'calibrated reflectivity'} #convert to mesh MESH, MESH_meta = mesh.main(refl_grid, alt_vec, temp_data) # fig = plt.figure(figsize=[10,10]) # plt.imshow(REFL) #return 2D mesh grid return MESH, MESH_meta, REFL, REFL_meta