def _load_data(self, obj_id): self.grasp_metrics = json.load( open(self.data_dir + obj_id + '.json', 'r')) self.candidate_grasps_dict = pkl.load( open(self.data_dir + obj_id + '.pkl', 'rb')) self.object_mesh = ObjFile(self.data_dir + obj_id + '.obj').read() self.stable_poses = StablePoseFile(self.data_dir + obj_id + '.stp').read() self.tensor = self.file_arr['Tensor'][np.where( self.file_arr['Obj_id'] == obj_id)][0] self.array = self.file_arr['Array'][np.where( self.file_arr['Obj_id'] == obj_id)][0] depth = self.file_arr['Depth'][np.where( self.file_arr['Obj_id'] == obj_id)][0] self.config['env_rv_params']['min_radius'] = depth self.config['env_rv_params']['max_radius'] = depth
def load_mesh(mesh_id, config, rescale_mesh = False): # set up filepath from mesh id (this is where the service dumps the mesh filepath = os.path.join(consts.MESH_CACHE_DIR, mesh_id) + '.obj' # Initialize mesh processor. mesh_processor = mp.MeshProcessor(filepath, consts.MESH_CACHE_DIR) # Run through MP steps manually to make things easier mesh_processor._load_mesh() mesh_processor.mesh_.density = config['obj_density'] # _clean_mesh mesh_processor._remove_bad_tris() mesh_processor._remove_unreferenced_vertices() # # standardize pose, recover transform # verts_old = mesh_processor.mesh_.vertices.copy() # mesh_processor._standardize_pose() # verts_new = mesh_processor.mesh_.vertices # # Transform recovery # MAT_SIZE = min(verts_old.shape[0], 300) # tmat_rec = np.dot(np.linalg.pinv(np.hstack((verts_old[:MAT_SIZE], np.ones((MAT_SIZE, 1)) ))), # np.hstack((verts_new[:MAT_SIZE], np.ones((MAT_SIZE, 1)) ))).T # rotation = tmat_rec[:3, :3] # translation = tmat_rec[:3, 3] # transform = RigidTransform(rotation=rotation, translation=translation) # scale = 1.0 if rescale_mesh: # config['rescale_objects'] <- local config, current use case is pass in as arg mesh_processor._standardize_pose() mesh_processor._rescale_vertices(config['obj_target_scale'], config['obj_scaling_mode'], config['use_uniform_com']) mesh_processor.sdf_ = None if config['generate_sdf']: mesh_processor._generate_sdf(config['path_to_sdfgen'], config['sdf_dim'], config['sdf_padding']) mesh_processor._generate_stable_poses(config['stp_min_prob']) mesh, sdf, stable_poses = (mesh_processor.mesh, mesh_processor.sdf, mesh_processor.stable_poses,) # Make graspable graspable = GraspableObject3D(sdf = sdf, mesh = mesh, key = mesh_id, model_name = mesh_processor.obj_filename, mass = config['default_mass'], convex_pieces = None) # resave mesh to the proc file because the new CoM thing translates the mesh ObjFile(os.path.join(consts.MESH_CACHE_DIR, mesh_id) + '_proc.obj').write(graspable.mesh) return graspable, stable_poses
def __init__(self, path, elev): if not os.path.exists(DATA_DIR): raise NameError( "Path %s is not specified. Is the docker file set up properly?" % DATA_DIR) table_file = DATA_DIR + '/meshes/table.obj' self.table_mesh = ObjFile(table_file).read() self.data_dir = DATA_DIR + '/meshes/dexnet/' self.output_dir = DATA_DIR + '/reprojections/' self.config = YamlConfig( './cfg/tools/generate_projected_gqcnn_dataset.yaml') self.random_positions = 1 self.image_size = (300, 300) self.elev = 0 self.show_images = False self.cur_obj_label = 0 self.cur_image_label = 0 self.cur_pose_label = 0 if path is not None: self.output_dir = DATA_DIR + '/reprojections/' + path if elev is not None: print("Elevation angle is being set to %d" % elev) self.config['env_rv_params']['min_elev'] = elev self.config['env_rv_params']['max_elev'] = elev self.elev = elev tensor_config = self.config['tensors'] tensor_config['fields']['depth_ims_tf_table']['height'] = 32 tensor_config['fields']['depth_ims_tf_table']['width'] = 32 tensor_config['fields']['robust_ferrari_canny'] = {} tensor_config['fields']['robust_ferrari_canny']['dtype'] = 'float32' tensor_config['fields']['ferrari_canny'] = {} tensor_config['fields']['ferrari_canny']['dtype'] = 'float32' tensor_config['fields']['force_closure'] = {} tensor_config['fields']['force_closure']['dtype'] = 'float32' self.tensor_dataset = TensorDataset(self.output_dir, tensor_config) self.tensor_datapoint = self.tensor_dataset.datapoint_template if not os.path.exists(self.output_dir + '/images'): os.makedirs(self.output_dir + '/images') if not os.path.exists(self.output_dir + '/meshes'): os.makedirs(self.output_dir + '/meshes')
right_gripper = baxter_gripper.Gripper('right') right_gripper.calibrate() listener = tf.TransformListener() from_frame = 'base' time.sleep(1) # Main Code br = tf.TransformBroadcaster() # SETUP mesh = trimesh.load(MESH_FILENAME) vertices = mesh.vertices triangles = mesh.triangles normals = mesh.vertex_normals of = ObjFile(MESH_FILENAME) mesh = of.read() ar_tag = lookup_tag(TAG) # find the transformation from the object coordinates to world coordinates... somehow grasp_indices, best_metric_indices = sorted_contacts( vertices, normals, T_ar_object) for indices in best_metric_indices[0:5]: a = grasp_indices[indices][0] b = grasp_indices[indices][1] normal1, normal2 = normals[a], normals[b] contact1, contact2 = vertices[a], vertices[b] # visualize the mesh and contacts vis.figure() vis.mesh(mesh)
class Reprojection: def __init__(self, path, elev): if not os.path.exists(DATA_DIR): raise NameError( "Path %s is not specified. Is the docker file set up properly?" % DATA_DIR) table_file = DATA_DIR + '/meshes/table.obj' self.table_mesh = ObjFile(table_file).read() self.data_dir = DATA_DIR + '/meshes/dexnet/' self.output_dir = DATA_DIR + '/reprojections/' self.config = YamlConfig( './cfg/tools/generate_projected_gqcnn_dataset.yaml') self.random_positions = 1 self.image_size = (300, 300) self.elev = 0 self.show_images = False self.cur_obj_label = 0 self.cur_image_label = 0 self.cur_pose_label = 0 if path is not None: self.output_dir = DATA_DIR + '/reprojections/' + path if elev is not None: print("Elevation angle is being set to %d" % elev) self.config['env_rv_params']['min_elev'] = elev self.config['env_rv_params']['max_elev'] = elev self.elev = elev tensor_config = self.config['tensors'] tensor_config['fields']['depth_ims_tf_table']['height'] = 32 tensor_config['fields']['depth_ims_tf_table']['width'] = 32 tensor_config['fields']['robust_ferrari_canny'] = {} tensor_config['fields']['robust_ferrari_canny']['dtype'] = 'float32' tensor_config['fields']['ferrari_canny'] = {} tensor_config['fields']['ferrari_canny']['dtype'] = 'float32' tensor_config['fields']['force_closure'] = {} tensor_config['fields']['force_closure']['dtype'] = 'float32' self.tensor_dataset = TensorDataset(self.output_dir, tensor_config) self.tensor_datapoint = self.tensor_dataset.datapoint_template if not os.path.exists(self.output_dir + '/images'): os.makedirs(self.output_dir + '/images') if not os.path.exists(self.output_dir + '/meshes'): os.makedirs(self.output_dir + '/meshes') def _load_file_ids(self): dtype = [('Obj_id', (np.str_, 40)), ('Tensor', int), ('Array', int), ('Depth', float)] with open(self.data_dir + 'files.csv', 'r') as csv_file: data = [] csv_reader = csv.reader(csv_file, delimiter=',') for row in csv_reader: data.append( tuple([ int(value) if value.isdigit() else value for value in row ])) self.file_arr = np.array(data, dtype=dtype) files = os.listdir(self.data_dir) files = [name.split('.')[0] for name in files] files.remove('files') self.all_objects = list(set(files)) def _load_data(self, obj_id): self.grasp_metrics = json.load( open(self.data_dir + obj_id + '.json', 'r')) self.candidate_grasps_dict = pkl.load( open(self.data_dir + obj_id + '.pkl', 'rb')) self.object_mesh = ObjFile(self.data_dir + obj_id + '.obj').read() self.stable_poses = StablePoseFile(self.data_dir + obj_id + '.stp').read() self.tensor = self.file_arr['Tensor'][np.where( self.file_arr['Obj_id'] == obj_id)][0] self.array = self.file_arr['Array'][np.where( self.file_arr['Obj_id'] == obj_id)][0] depth = self.file_arr['Depth'][np.where( self.file_arr['Obj_id'] == obj_id)][0] self.config['env_rv_params']['min_radius'] = depth self.config['env_rv_params']['max_radius'] = depth def start_rendering(self): self._load_file_ids() for object_id in self.all_objects: self._load_data(object_id) for i, stable_pose in enumerate(self.stable_poses): try: candidate_grasp_info = self.candidate_grasps_dict[ stable_pose.id] except KeyError: continue if not candidate_grasp_info: Warning("Candidate grasp info of object id %s empty" % object_id) Warning("Continue.") continue T_obj_stp = stable_pose.T_obj_table.as_frames('obj', 'stp') T_obj_stp = self.object_mesh.get_T_surface_obj(T_obj_stp) T_table_obj = RigidTransform(from_frame='table', to_frame='obj') scene_objs = { 'table': SceneObject(self.table_mesh, T_table_obj) } urv = UniformPlanarWorksurfaceImageRandomVariable( self.object_mesh, [RenderMode.DEPTH_SCENE, RenderMode.SEGMASK], 'camera', self.config['env_rv_params'], scene_objs=scene_objs, stable_pose=stable_pose) render_sample = urv.rvs(size=self.random_positions) # for render_sample in render_samples: binary_im = render_sample.renders[RenderMode.SEGMASK].image depth_im = render_sample.renders[ RenderMode.DEPTH_SCENE].image.crop(300, 300) orig_im = Image.fromarray(self._scale_image(depth_im.data)) if self.show_images: orig_im.show() orig_im.convert('RGB').save(self.output_dir + '/images/' + object_id + '_elev_' + str(self.elev) + '_original.png') print("Saved original") T_stp_camera = render_sample.camera.object_to_camera_pose shifted_camera_intr = render_sample.camera.camera_intr.crop( 300, 300, 240, 320) depth_points = self._reproject_to_3D(depth_im, shifted_camera_intr) transformed_points, T_camera = self._transformation( depth_points) camera_dir = np.dot(T_camera.rotation, np.array([0.0, 0.0, -1.0])) pcd = o3d.geometry.PointCloud() # print(camera_dir) pcd.points = o3d.utility.Vector3dVector(transformed_points.T) # TODO check normals!! # pcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30)) # pcd.normals = o3d.utility.Vector3dVector(-np.asarray(pcd.normals)) normals = np.repeat([camera_dir], len(transformed_points.T), axis=0) pcd.normals = o3d.utility.Vector3dVector(normals) # cs_points = [[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1]] # cs_lines = [[0, 1], [0, 2], [0, 3]] # colors = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] # cs = o3d.geometry.LineSet(points=o3d.utility.Vector3dVector(cs_points), # lines=o3d.utility.Vector2iVector(cs_lines)) # cs.colors = o3d.utility.Vector3dVector(colors) # o3d.visualization.draw_geometries([pcd]) depth = self._o3d_meshing(pcd) # projected_depth_im,new_camera_intr,table_height = self._projection(new_points,shifted_camera_intr) new_camera_intr = shifted_camera_intr new_camera_intr.cx = 150 new_camera_intr.cy = 150 projected_depth_im = np.asarray(depth) projected_depth_im[projected_depth_im == 0.0] = -1.0 table_height = np.median( projected_depth_im[projected_depth_im != -1.0].flatten()) print("Minimum depth:", min(projected_depth_im.flatten())) print("Maximum depth:", max(projected_depth_im.flatten())) im = Image.fromarray(self._scale_image(projected_depth_im)) projected_depth_im = DepthImage(projected_depth_im, frame='new_camera') cx = projected_depth_im.center[1] cy = projected_depth_im.center[0] # Grasp conversion T_obj_old_camera = T_stp_camera * T_obj_stp.as_frames( 'obj', T_stp_camera.from_frame) T_obj_camera = T_camera.dot(T_obj_old_camera) for grasp_info in candidate_grasp_info: grasp = grasp_info.grasp collision_free = grasp_info.collision_free grasp_2d = grasp.project_camera(T_obj_camera, new_camera_intr) dx = cx - grasp_2d.center.x dy = cy - grasp_2d.center.y translation = np.array([dy, dx]) # Project 3D old_camera_cs contact points into new camera cs contact_points = np.append(grasp_info.contact_point1, 1).T new_cam = np.dot(T_obj_camera.matrix, contact_points) c1 = new_camera_intr.project( Point(new_cam[0:3], frame=new_camera_intr.frame)) contact_points = np.append(grasp_info.contact_point2, 1).T new_cam = np.dot(T_obj_camera.matrix, contact_points) c2 = new_camera_intr.project( Point(new_cam[0:3], frame=new_camera_intr.frame)) # Check if there are occlusions at contact points if projected_depth_im.data[ c1.x, c1.y] == -1.0 or projected_depth_im.data[ c2.x, c2.y] == -1.0: print("Contact point at occlusion") contact_occlusion = True else: contact_occlusion = False # Mark contact points in image im = im.convert('RGB') if False: im_draw = ImageDraw.Draw(im) im_draw.line([(c1[0], c1[1] - 10), (c1[0], c1[1] + 10)], fill=(255, 0, 0, 255)) im_draw.line([(c1[0] - 10, c1[1]), (c1[0] + 10, c1[1])], fill=(255, 0, 0, 255)) im_draw.line([(c2[0], c2[1] - 10), (c2[0], c2[1] + 10)], fill=(255, 0, 0, 255)) im_draw.line([(c2[0] - 10, c2[1]), (c2[0] + 10, c2[1])], fill=(255, 0, 0, 255)) if self.show_images: im.show() im.save(self.output_dir + '/images/' + object_id + '_elev_' + str(self.elev) + '_reprojected.png') # Transform and crop image depth_im_tf = projected_depth_im.transform( translation, grasp_2d.angle) depth_im_tf = depth_im_tf.crop(96, 96) # Apply transformation to contact points trans_map = np.array([[1, 0, dx], [0, 1, dy]]) rot_map = cv2.getRotationMatrix2D( (cx, cy), np.rad2deg(grasp_2d.angle), 1) trans_map_aff = np.r_[trans_map, [[0, 0, 1]]] rot_map_aff = np.r_[rot_map, [[0, 0, 1]]] full_map = rot_map_aff.dot(trans_map_aff) # print("Full map",full_map) c1_rotated = (np.dot(full_map, np.r_[c1.vector, [1]]) - np.array([150 - 48, 150 - 48, 0])) / 3 c2_rotated = (np.dot(full_map, np.r_[c2.vector, [1]]) - np.array([150 - 48, 150 - 48, 0])) / 3 grasp_line = depth_im_tf.data[48] occlusions = len(np.where(np.squeeze(grasp_line) == -1)[0]) # Set occlusions to table height for resizing image depth_im_tf.data[depth_im_tf.data == -1.0] = table_height depth_image = Image.fromarray(np.asarray(depth_im_tf.data))\ .resize((32, 32), resample=Image.BILINEAR) depth_im_tf_table = np.asarray(depth_image).reshape( 32, 32, 1) # depth_im_tf_table = depth_im_tf.resize((32, 32,), interp='bilinear') im = Image.fromarray( self._scale_image(depth_im_tf_table.reshape( 32, 32))).convert('RGB') draw = ImageDraw.Draw(im) draw.line([(c1_rotated[0], c1_rotated[1] - 3), (c1_rotated[0], c1_rotated[1] + 3)], fill=(255, 0, 0, 255)) draw.line([(c1_rotated[0] - 3, c1_rotated[1]), (c1_rotated[0] + 3, c1_rotated[1])], fill=(255, 0, 0, 255)) draw.line([(c2_rotated[0], c2_rotated[1] - 3), (c2_rotated[0], c2_rotated[1] + 3)], fill=(255, 0, 0, 255)) draw.line([(c2_rotated[0] - 3, c2_rotated[1]), (c2_rotated[0] + 3, c2_rotated[1])], fill=(255, 0, 0, 255)) if self.show_images: im.show() im.save(self.output_dir + '/images/' + object_id + '_elev_' + str(self.elev) + '_transformed.png') hand_pose = np.r_[grasp_2d.center.y, grasp_2d.center.x, grasp_2d.depth, grasp_2d.angle, grasp_2d.center.y - new_camera_intr.cy, grasp_2d.center.x - new_camera_intr.cx, grasp_2d.width_px / 3] self.tensor_datapoint[ 'depth_ims_tf_table'] = depth_im_tf_table self.tensor_datapoint['hand_poses'] = hand_pose self.tensor_datapoint['obj_labels'] = self.cur_obj_label self.tensor_datapoint['collision_free'] = collision_free self.tensor_datapoint['pose_labels'] = self.cur_pose_label self.tensor_datapoint[ 'image_labels'] = self.cur_image_label self.tensor_datapoint['files'] = [self.tensor, self.array] self.tensor_datapoint['occlusions'] = occlusions self.tensor_datapoint[ 'contact_occlusion'] = contact_occlusion for metric_name, metric_val in self.grasp_metrics[str( grasp.id)].iteritems(): coll_free_metric = (1 * collision_free) * metric_val self.tensor_datapoint[metric_name] = coll_free_metric self.tensor_dataset.add(self.tensor_datapoint) print("Saved dataset point") self.cur_image_label += 1 self.cur_pose_label += 1 gc.collect() self.cur_obj_label += 1 self.tensor_dataset.flush() def _o3d_meshing(self, pcd): mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson( pcd, depth=15) densities = np.asarray(densities) # print('visualize densities') # densities = np.asarray(densities) # density_colors = plt.get_cmap('plasma')( # (densities - densities.min()) / (densities.max() - densities.min())) # density_colors = density_colors[:, :3] # density_mesh = o3d.geometry.TriangleMesh() # density_mesh.vertices = mesh.vertices # density_mesh.triangles = mesh.triangles # density_mesh.triangle_normals = mesh.triangle_normals # density_mesh.vertex_colors = o3d.utility.Vector3dVector(density_colors) # o3d.visualization.draw_geometries([density_mesh]) vertices_to_remove = densities < 7.0 # np.quantile(densities, 0.01) mesh.remove_vertices_by_mask(vertices_to_remove) mesh.compute_vertex_normals() mesh.paint_uniform_color([0.6, 0.6, 0.6]) o3d.io.write_triangle_mesh( self.output_dir + '/meshes/' + "%05d_%03d.ply" % (self.tensor, self.array), mesh) if visualise_mesh: o3d.visualization.draw_geometries([mesh]) vis = o3d.visualization.Visualizer() vis.create_window(height=300, width=300, visible=False) vis.get_render_option().load_from_json("./data/renderconfig.json") vis.add_geometry(mesh) vic = vis.get_view_control() params = vic.convert_to_pinhole_camera_parameters() (fx, fy) = params.intrinsic.get_focal_length() (cx, cy) = params.intrinsic.get_principal_point() params.intrinsic.set_intrinsics(300, 300, 525, 525, cx, cy) params.extrinsic = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) vic.convert_from_pinhole_camera_parameters(params) vis.poll_events() vis.update_renderer() depth = vis.capture_depth_float_buffer(do_render=True) # vis.destroy_window() # del vis return depth def _projection(self, transformed_points, camera_intr): # Use Camera intrinsics new_camera_intr = camera_intr new_camera_intr.cx = 150 new_camera_intr.cy = 150 K = new_camera_intr.proj_matrix projected_points = np.dot(K, transformed_points) point_depths = projected_points[2, :] table = np.median(point_depths) point_z = np.tile(point_depths, [3, 1]) points_proj = np.divide(projected_points, point_z) # Rounding points_proj = np.round(points_proj) points_proj = points_proj[:2, :].astype(np.int16) valid_ind = np.where((points_proj[0, :] >= 0) & (points_proj[0, :] < self.image_size[0]) & (points_proj[1, :] >= 0) & (points_proj[1, :] < self.image_size[0]))[0] # Fill new image with NaN's fill_value = -1.0 depth_data = np.full([self.image_size[0], self.image_size[1]], fill_value) for ind in valid_ind: prev_depth = depth_data[points_proj[1, ind], points_proj[0, ind]] if prev_depth == fill_value or prev_depth >= point_depths[ind]: depth_data[points_proj[1, ind], points_proj[0, ind]] = point_depths[ind] return depth_data, new_camera_intr, table def _transformation(self, points): # Points are given in camera frame. Transform to new camera frame! camera_new_position = np.array([[0], [0], [0]]) ang = np.deg2rad(self.elev) Rot = np.array([[1, 0, 0], [0, np.cos(ang), -np.sin(ang)], [0, np.sin(ang), np.cos(ang)]]) dist = self.config['env_rv_params']['min_radius'] * np.sin(ang) height = self.config['env_rv_params']['min_radius'] - self.config[ 'env_rv_params']['min_radius'] * np.cos(ang) # Rotation around x axis, therefore translation back to object center alongside y axis trans = np.array([0, dist, height]) Rt = np.column_stack((Rot, trans)) # Apply transformation to homogeneous coordinates of the points homogeneous_points = np.append(np.transpose(points), np.ones((1, len(points))), axis=0) transformed_points = np.dot(Rt, homogeneous_points) return transformed_points, RigidTransform(rotation=Rot, translation=trans, from_frame='camera', to_frame='new_camera') # def _PCA(self, points, sorting=True): # mean = np.mean(points, axis=0) # data_adjusted = points - mean # # matrix = np.cov(data_adjusted.T) # eigenvalues, eigenvectors = np.linalg.eig(matrix) # # if sorting: # sort = eigenvalues.argsort()[::-1] # eigenvalues = eigenvalues[sort] # eigenvectors = eigenvectors[:, sort] # return eigenvalues, eigenvectors def _reproject_to_3D(self, depth_im, camera_intr): # depth points will be given in camera frame! depth_points = camera_intr.deproject(depth_im).data.T return depth_points def _scale_image(self, depth): size = depth.shape flattend = depth.flatten() scaled = np.interp(flattend, (0.5, 0.75), (0, 255)) integ = scaled.astype(np.uint8) integ.resize(size) return integ
def generate_gqcnn_dataset(dataset_path, database, target_object_keys, env_rv_params, gripper_name, config): """ Generates a GQ-CNN TensorDataset for training models with new grippers, quality metrics, objects, and cameras. Parameters ---------- dataset_path : str path to save the dataset to database : :obj:`Hdf5Database` Dex-Net database containing the 3D meshes, grasps, and grasp metrics target_object_keys : :obj:`OrderedDict` dictionary mapping dataset names to target objects (either 'all' or a list of specific object keys) env_rv_params : :obj:`OrderedDict` parameters of the camera and object random variables used in sampling (see meshpy.UniformPlanarWorksurfaceImageRandomVariable for more info) gripper_name : str name of the gripper to use config : :obj:`autolab_core.YamlConfig` other parameters for dataset generation Notes ----- Required parameters of config are specified in Other Parameters Other Parameters ---------------- images_per_stable_pose : int number of object and camera poses to sample for each stable pose stable_pose_min_p : float minimum probability of occurrence for a stable pose to be used in data generation (used to prune bad stable poses gqcnn/crop_width : int width, in pixels, of crop region around each grasp center, before resize (changes the size of the region seen by the GQ-CNN) gqcnn/crop_height : int height, in pixels, of crop region around each grasp center, before resize (changes the size of the region seen by the GQ-CNN) gqcnn/final_width : int width, in pixels, of final transformed grasp image for input to the GQ-CNN (defaults to 32) gqcnn/final_height : int height, in pixels, of final transformed grasp image for input to the GQ-CNN (defaults to 32) table_alignment/max_approach_table_angle : float max angle between the grasp axis and the table normal when the grasp approach is maximally aligned with the table normal table_alignment/max_approach_offset : float max deviation from perpendicular approach direction to use in grasp collision checking table_alignment/num_approach_offset_samples : int number of approach samples to use in collision checking collision_checking/table_offset : float max allowable interpenetration between the gripper and table to be considered collision free collision_checking/table_mesh_filename : str path to a table mesh for collision checking (default data/meshes/table.obj) collision_checking/approach_dist : float distance, in meters, between the approach pose and final grasp pose along the grasp axis collision_checking/delta_approach : float amount, in meters, to discretize the straight-line path from the gripper approach pose to the final grasp pose tensors/datapoints_per_file : int number of datapoints to store in each unique tensor file on disk tensors/fields : :obj:`dict` dictionary mapping field names to dictionaries specifying the data type, height, width, and number of channels for each tensor debug : bool True (or 1) if the random seed should be set to enforce deterministic behavior, False (0) otherwise vis/candidate_grasps : bool True (or 1) if the collision free candidate grasps should be displayed in 3D (for debugging) vis/rendered_images : bool True (or 1) if the rendered images for each stable pose should be displayed (for debugging) vis/grasp_images : bool True (or 1) if the transformed grasp images should be displayed (for debugging) """ # read data gen params output_dir = dataset_path gripper = RobotGripper.load(gripper_name) image_samples_per_stable_pose = config['images_per_stable_pose'] stable_pose_min_p = config['stable_pose_min_p'] # read gqcnn params gqcnn_params = config['gqcnn'] im_crop_height = gqcnn_params['crop_height'] im_crop_width = gqcnn_params['crop_width'] im_final_height = gqcnn_params['final_height'] im_final_width = gqcnn_params['final_width'] cx_crop = float(im_crop_width) / 2 cy_crop = float(im_crop_height) / 2 # open database dataset_names = target_object_keys.keys() datasets = [database.dataset(dn) for dn in dataset_names] # set target objects for dataset in datasets: if target_object_keys[dataset.name] == 'all': target_object_keys[dataset.name] = dataset.object_keys # setup grasp params table_alignment_params = config['table_alignment'] min_grasp_approach_offset = -np.deg2rad( table_alignment_params['max_approach_offset']) max_grasp_approach_offset = np.deg2rad( table_alignment_params['max_approach_offset']) max_grasp_approach_table_angle = np.deg2rad( table_alignment_params['max_approach_table_angle']) num_grasp_approach_samples = table_alignment_params[ 'num_approach_offset_samples'] phi_offsets = [] if max_grasp_approach_offset == min_grasp_approach_offset: phi_inc = 1 elif num_grasp_approach_samples == 1: phi_inc = max_grasp_approach_offset - min_grasp_approach_offset + 1 else: phi_inc = (max_grasp_approach_offset - min_grasp_approach_offset) / ( num_grasp_approach_samples - 1) phi = min_grasp_approach_offset while phi <= max_grasp_approach_offset: phi_offsets.append(phi) phi += phi_inc # setup collision checking coll_check_params = config['collision_checking'] approach_dist = coll_check_params['approach_dist'] delta_approach = coll_check_params['delta_approach'] table_offset = coll_check_params['table_offset'] table_mesh_filename = coll_check_params['table_mesh_filename'] if not os.path.isabs(table_mesh_filename): table_mesh_filename = os.path.join( os.path.dirname(os.path.realpath(__file__)), '..', table_mesh_filename) table_mesh = ObjFile(table_mesh_filename).read() # set tensor dataset config tensor_config = config['tensors'] tensor_config['fields']['depth_ims_tf_table']['height'] = im_final_height tensor_config['fields']['depth_ims_tf_table']['width'] = im_final_width tensor_config['fields']['obj_masks']['height'] = im_final_height tensor_config['fields']['obj_masks']['width'] = im_final_width # add available metrics (assuming same are computed for all objects) metric_names = [] dataset = datasets[0] obj_keys = dataset.object_keys if len(obj_keys) == 0: raise ValueError('No valid objects in dataset %s' % (dataset.name)) obj = dataset[obj_keys[0]] grasps = dataset.grasps(obj.key, gripper=gripper.name) grasp_metrics = dataset.grasp_metrics(obj.key, grasps, gripper=gripper.name) metric_names = grasp_metrics[grasp_metrics.keys()[0]].keys() for metric_name in metric_names: tensor_config['fields'][metric_name] = {} tensor_config['fields'][metric_name]['dtype'] = 'float32' # init tensor dataset tensor_dataset = TensorDataset(output_dir, tensor_config) tensor_datapoint = tensor_dataset.datapoint_template # setup log file experiment_log_filename = os.path.join(output_dir, 'dataset_generation.log') formatter = logging.Formatter('%(asctime)s %(levelname)s: %(message)s') hdlr = logging.FileHandler(experiment_log_filename) hdlr.setFormatter(formatter) logging.getLogger().addHandler(hdlr) root_logger = logging.getLogger() # copy config out_config_filename = os.path.join(output_dir, 'dataset_generation.json') ordered_dict_config = collections.OrderedDict() for key in config.keys(): ordered_dict_config[key] = config[key] with open(out_config_filename, 'w') as outfile: json.dump(ordered_dict_config, outfile) # 1. Precompute the set of valid grasps for each stable pose: # i) Perpendicular to the table # ii) Collision-free along the approach direction # load grasps if they already exist grasp_cache_filename = os.path.join(output_dir, CACHE_FILENAME) if os.path.exists(grasp_cache_filename): logging.info('Loading grasp candidates from file') candidate_grasps_dict = pkl.load(open(grasp_cache_filename, 'rb')) # otherwise re-compute by reading from the database and enforcing constraints else: # create grasps dict candidate_grasps_dict = {} # loop through datasets and objects for dataset in datasets: logging.info('Reading dataset %s' % (dataset.name)) for obj in dataset: if obj.key not in target_object_keys[dataset.name]: continue # init candidate grasp storage candidate_grasps_dict[obj.key] = {} # setup collision checker collision_checker = GraspCollisionChecker(gripper) collision_checker.set_graspable_object(obj) # read in the stable poses of the mesh stable_poses = dataset.stable_poses(obj.key) for i, stable_pose in enumerate(stable_poses): # render images if stable pose is valid if stable_pose.p > stable_pose_min_p: candidate_grasps_dict[obj.key][stable_pose.id] = [] # setup table in collision checker T_obj_stp = stable_pose.T_obj_table.as_frames( 'obj', 'stp') T_obj_table = obj.mesh.get_T_surface_obj( T_obj_stp, delta=table_offset).as_frames('obj', 'table') T_table_obj = T_obj_table.inverse() collision_checker.set_table(table_mesh_filename, T_table_obj) # read grasp and metrics grasps = dataset.grasps(obj.key, gripper=gripper.name) logging.info( 'Aligning %d grasps for object %s in stable %s' % (len(grasps), obj.key, stable_pose.id)) # align grasps with the table aligned_grasps = [ grasp.perpendicular_table(stable_pose) for grasp in grasps ] # check grasp validity logging.info( 'Checking collisions for %d grasps for object %s in stable %s' % (len(grasps), obj.key, stable_pose.id)) for aligned_grasp in aligned_grasps: # check angle with table plane and skip unaligned grasps _, grasp_approach_table_angle, _ = aligned_grasp.grasp_angles_from_stp_z( stable_pose) perpendicular_table = ( np.abs(grasp_approach_table_angle) < max_grasp_approach_table_angle) if not perpendicular_table: continue # check whether any valid approach directions are collision free collision_free = False for phi_offset in phi_offsets: rotated_grasp = aligned_grasp.grasp_y_axis_offset( phi_offset) collides = collision_checker.collides_along_approach( rotated_grasp, approach_dist, delta_approach) if not collides: collision_free = True break # store if aligned to table candidate_grasps_dict[obj.key][ stable_pose.id].append( GraspInfo(aligned_grasp, collision_free)) # visualize if specified if collision_free and config['vis'][ 'candidate_grasps']: logging.info('Grasp %d' % (aligned_grasp.id)) vis.figure() vis.gripper_on_object(gripper, aligned_grasp, obj, stable_pose.T_obj_world) vis.show() # save to file logging.info('Saving to file') pkl.dump(candidate_grasps_dict, open(grasp_cache_filename, 'wb')) # 2. Render a dataset of images and associate the gripper pose with image coordinates for each grasp in the Dex-Net database # setup variables obj_category_map = {} pose_category_map = {} cur_pose_label = 0 cur_obj_label = 0 cur_image_label = 0 # render images for each stable pose of each object in the dataset render_modes = [RenderMode.SEGMASK, RenderMode.DEPTH_SCENE] for dataset in datasets: logging.info('Generating data for dataset %s' % (dataset.name)) # iterate through all object keys object_keys = dataset.object_keys for obj_key in object_keys: obj = dataset[obj_key] if obj.key not in target_object_keys[dataset.name]: continue # read in the stable poses of the mesh stable_poses = dataset.stable_poses(obj.key) for i, stable_pose in enumerate(stable_poses): # render images if stable pose is valid if stable_pose.p > stable_pose_min_p: # log progress logging.info('Rendering images for object %s in %s' % (obj.key, stable_pose.id)) # add to category maps if obj.key not in obj_category_map.keys(): obj_category_map[obj.key] = cur_obj_label pose_category_map['%s_%s' % (obj.key, stable_pose.id)] = cur_pose_label # read in candidate grasps and metrics candidate_grasp_info = candidate_grasps_dict[obj.key][ stable_pose.id] candidate_grasps = [g.grasp for g in candidate_grasp_info] grasp_metrics = dataset.grasp_metrics(obj.key, candidate_grasps, gripper=gripper.name) # compute object pose relative to the table T_obj_stp = stable_pose.T_obj_table.as_frames('obj', 'stp') T_obj_stp = obj.mesh.get_T_surface_obj(T_obj_stp) # sample images from random variable T_table_obj = RigidTransform(from_frame='table', to_frame='obj') scene_objs = { 'table': SceneObject(table_mesh, T_table_obj) } urv = UniformPlanarWorksurfaceImageRandomVariable( obj.mesh, render_modes, 'camera', env_rv_params, stable_pose=stable_pose, scene_objs=scene_objs) render_start = time.time() render_samples = urv.rvs( size=image_samples_per_stable_pose) render_stop = time.time() logging.info('Rendering images took %.3f sec' % (render_stop - render_start)) # visualize if config['vis']['rendered_images']: d = int(np.ceil( np.sqrt(image_samples_per_stable_pose))) # binary vis2d.figure() for j, render_sample in enumerate(render_samples): vis2d.subplot(d, d, j + 1) vis2d.imshow(render_sample.renders[ RenderMode.SEGMASK].image) # depth table vis2d.figure() for j, render_sample in enumerate(render_samples): vis2d.subplot(d, d, j + 1) vis2d.imshow(render_sample.renders[ RenderMode.DEPTH_SCENE].image) vis2d.show() # tally total amount of data num_grasps = len(candidate_grasps) num_images = image_samples_per_stable_pose num_save = num_images * num_grasps logging.info('Saving %d datapoints' % (num_save)) # for each candidate grasp on the object compute the projection # of the grasp into image space for render_sample in render_samples: # read images binary_im = render_sample.renders[ RenderMode.SEGMASK].image depth_im_table = render_sample.renders[ RenderMode.DEPTH_SCENE].image # read camera params T_stp_camera = render_sample.camera.object_to_camera_pose shifted_camera_intr = render_sample.camera.camera_intr # read pixel offsets cx = depth_im_table.center[1] cy = depth_im_table.center[0] # compute intrinsics for virtual camera of the final # cropped and rescaled images camera_intr_scale = float(im_final_height) / float( im_crop_height) cropped_camera_intr = shifted_camera_intr.crop( im_crop_height, im_crop_width, cy, cx) final_camera_intr = cropped_camera_intr.resize( camera_intr_scale) # create a thumbnail for each grasp for grasp_info in candidate_grasp_info: # read info grasp = grasp_info.grasp collision_free = grasp_info.collision_free # get the gripper pose T_obj_camera = T_stp_camera * T_obj_stp.as_frames( 'obj', T_stp_camera.from_frame) grasp_2d = grasp.project_camera( T_obj_camera, shifted_camera_intr) # center images on the grasp, rotate to image x axis dx = cx - grasp_2d.center.x dy = cy - grasp_2d.center.y translation = np.array([dy, dx]) binary_im_tf = binary_im.transform( translation, grasp_2d.angle) depth_im_tf_table = depth_im_table.transform( translation, grasp_2d.angle) # crop to image size binary_im_tf = binary_im_tf.crop( im_crop_height, im_crop_width) depth_im_tf_table = depth_im_tf_table.crop( im_crop_height, im_crop_width) # resize to image size binary_im_tf = binary_im_tf.resize( (im_final_height, im_final_width), interp='nearest') depth_im_tf_table = depth_im_tf_table.resize( (im_final_height, im_final_width)) # visualize the transformed images if config['vis']['grasp_images']: grasp_center = Point( depth_im_tf_table.center, frame=final_camera_intr.frame) tf_grasp_2d = Grasp2D( grasp_center, 0, grasp_2d.depth, width=gripper.max_width, camera_intr=final_camera_intr) # plot 2D grasp image vis2d.figure() vis2d.subplot(2, 2, 1) vis2d.imshow(binary_im) vis2d.grasp(grasp_2d) vis2d.subplot(2, 2, 2) vis2d.imshow(depth_im_table) vis2d.grasp(grasp_2d) vis2d.subplot(2, 2, 3) vis2d.imshow(binary_im_tf) vis2d.grasp(tf_grasp_2d) vis2d.subplot(2, 2, 4) vis2d.imshow(depth_im_tf_table) vis2d.grasp(tf_grasp_2d) vis2d.title('Coll Free? %d' % (grasp_info.collision_free)) vis2d.show() # plot 3D visualization vis.figure() T_obj_world = vis.mesh_stable_pose( obj.mesh, stable_pose.T_obj_world, style='surface', dim=0.5) vis.gripper(gripper, grasp, T_obj_world, color=(0.3, 0.3, 0.3)) vis.show() # form hand pose array hand_pose = np.r_[grasp_2d.center.y, grasp_2d.center.x, grasp_2d.depth, grasp_2d.angle, grasp_2d.center.y - shifted_camera_intr.cy, grasp_2d.center.x - shifted_camera_intr.cx, grasp_2d.width_px] # store to data buffers tensor_datapoint[ 'depth_ims_tf_table'] = depth_im_tf_table.raw_data tensor_datapoint[ 'obj_masks'] = binary_im_tf.raw_data tensor_datapoint['hand_poses'] = hand_pose tensor_datapoint['collision_free'] = collision_free tensor_datapoint['obj_labels'] = cur_obj_label tensor_datapoint['pose_labels'] = cur_pose_label tensor_datapoint['image_labels'] = cur_image_label for metric_name, metric_val in grasp_metrics[ grasp.id].iteritems(): coll_free_metric = ( 1 * collision_free) * metric_val tensor_datapoint[ metric_name] = coll_free_metric tensor_dataset.add(tensor_datapoint) # update image label cur_image_label += 1 # update pose label cur_pose_label += 1 # force clean up gc.collect() # update object label cur_obj_label += 1 # force clean up gc.collect() # save last file tensor_dataset.flush() # save category mappings obj_cat_filename = os.path.join(output_dir, 'object_category_map.json') json.dump(obj_category_map, open(obj_cat_filename, 'w')) pose_cat_filename = os.path.join(output_dir, 'pose_category_map.json') json.dump(pose_category_map, open(pose_cat_filename, 'w'))
def save_dexnet_objects(output_path, database, target_object_keys, config, pointers, num): slice_dataset = False files = [] if not os.path.exists(output_path): os.mkdir(output_path) for each_file in os.listdir(output_path): os.remove(output_path + '/' + each_file) gripper = RobotGripper.load(config['gripper']) # Setup grasp params: table_alignment_params = config['table_alignment'] min_grasp_approach_offset = -np.deg2rad( table_alignment_params['max_approach_offset']) max_grasp_approach_offset = np.deg2rad( table_alignment_params['max_approach_offset']) max_grasp_approach_table_angle = np.deg2rad( table_alignment_params['max_approach_table_angle']) num_grasp_approach_samples = table_alignment_params[ 'num_approach_offset_samples'] phi_offsets = [] if max_grasp_approach_offset == min_grasp_approach_offset: phi_inc = 1 elif num_grasp_approach_samples == 1: phi_inc = max_grasp_approach_offset - min_grasp_approach_offset + 1 else: phi_inc = (max_grasp_approach_offset - min_grasp_approach_offset) / ( num_grasp_approach_samples - 1) phi = min_grasp_approach_offset while phi <= max_grasp_approach_offset: phi_offsets.append(phi) phi += phi_inc # Setup collision checking coll_check_params = config['collision_checking'] approach_dist = coll_check_params['approach_dist'] delta_approach = coll_check_params['delta_approach'] table_offset = coll_check_params['table_offset'] stable_pose_min_p = config['stable_pose_min_p'] table_mesh_filename = coll_check_params['table_mesh_filename'] if not os.path.isabs(table_mesh_filename): table_mesh_filename = os.path.join(DATA_DIR, table_mesh_filename) # #table_mesh_filename = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', table_mesh_filename) # table_mesh = ObjFile(table_mesh_filename).read() dataset_names = target_object_keys.keys() datasets = [database.dataset(dn) for dn in dataset_names] if slice_dataset: datasets = [dataset.subset(0, 100) for dataset in datasets] start = 0 for dataset in datasets: target_object_keys[dataset.name] = [] end = start + len(dataset.object_keys) for cnt, _id in enumerate(pointers.obj_ids): if _id >= end or _id < start: continue target_object_keys[dataset.name].append(dataset.object_keys[_id - start]) files.append( tuple([ dataset.object_keys[_id - start], pointers.tensor[cnt], pointers.array[cnt], pointers.depths[cnt] ])) start += end print(target_object_keys) print("target object keys:", len(target_object_keys['3dnet']), len(target_object_keys['kit'])) files = np.array(files, dtype=[('Object_id', (np.str_, 40)), ('Tensor', int), ('Array', int), ('Depth', float)]) # Precompute set of valid grasps candidate_grasps_dict = {} counter = 0 for dataset in datasets: for obj in dataset: if obj.key not in target_object_keys[dataset.name]: continue print("Object in subset") # Initiate candidate grasp storage candidate_grasps_dict[obj.key] = {} # Setup collision checker collision_checker = GraspCollisionChecker(gripper) collision_checker.set_graspable_object(obj) # Read in the stable poses of the mesh stable_poses = dataset.stable_poses(obj.key) try: stable_pose = stable_poses[pointers.pose_num[counter]] except IndexError: print( "Problems with reading pose. Tensor %d, Array %d, Pose %d" % (pointers.tensor[counter], pointers.array[counter], pointers.pose_num[counter])) print("Stable poses:", stable_poses) print("Pointers pose:", pointers.pose_num[counter]) counter += 1 print("Continue.") continue print("Read in stable pose") candidate_grasps_dict[obj.key][stable_pose.id] = [] # Setup table in collision checker T_obj_stp = stable_pose.T_obj_table.as_frames('obj', 'stp') T_obj_table = obj.mesh.get_T_surface_obj( T_obj_stp, delta=table_offset).as_frames('obj', 'table') T_table_obj = T_obj_table.inverse() collision_checker.set_table(table_mesh_filename, T_table_obj) # read grasp and metrics grasps = dataset.grasps(obj.key, gripper=gripper.name) # align grasps with the table aligned_grasps = [ grasp.perpendicular_table(stable_pose) for grasp in grasps ] i = 0 found = False if len(aligned_grasps) < pointers.grasp_num[counter]: raise IndexError print("pointers grasp num", pointers.grasp_num[counter]) print("tensor", pointers.tensor[counter]) print("array", pointers.array[counter]) # Check grasp validity for aligned_grasp in aligned_grasps: # Check angle with table plane and skip unaligned grasps _, grasp_approach_table_angle, _ = aligned_grasp.grasp_angles_from_stp_z( stable_pose) perpendicular_table = (np.abs(grasp_approach_table_angle) < max_grasp_approach_table_angle) if not perpendicular_table: continue # Check whether any valid approach directions are collision free collision_free = False for phi_offset in phi_offsets: rotated_grasp = aligned_grasp.grasp_y_axis_offset( phi_offset) collides = collision_checker.collides_along_approach( rotated_grasp, approach_dist, delta_approach) if not collides: collision_free = True break # Store if aligned to table if i == pointers.grasp_num[counter]: found, contact_points = aligned_grasp.close_fingers(obj) print("Contact points", contact_points) if not found: print("Could not find contact points. continue.") break else: print("Original metric: ", pointers.metrics[counter]) print( "Metrics mapped point: ", dataset.grasp_metrics(obj.key, [aligned_grasp], gripper=gripper.name)) candidate_grasps_dict[obj.key][stable_pose.id].append( GraspInfo(aligned_grasp, collision_free, [ contact_points[0].point, contact_points[1].point ])) # logging.info('Grasp %d' % (aligned_grasp.id)) # vis.figure() # vis.gripper_on_object(gripper, aligned_grasp, obj, stable_pose.T_obj_world, plot_table=False) # vis.show() break i += 1 if found: # Save files print("Saving file: ", obj.key) savefile = ObjFile(DATA_DIR + "/meshes/dexnet/" + obj.key + ".obj") savefile.write(obj.mesh) # print("Vertices:", obj.mesh.vertices.shape) # print("Triangles:", obj.mesh.triangles.shape) mesh = o3d.geometry.TriangleMesh( o3d.utility.Vector3dVector(obj.mesh.vertices), o3d.utility.Vector3iVector(obj.mesh.triangles)) o3d.io.write_triangle_mesh( DATA_DIR + '/PerfectPredictions/3D_meshes/' + "%05d_%03d.ply" % (pointers.tensor[counter], pointers.array[counter]), mesh) # Save stable poses save_stp = StablePoseFile(DATA_DIR + "/meshes/dexnet/" + obj.key + ".stp") save_stp.write(stable_poses) # Save candidate grasp info pkl.dump( candidate_grasps_dict[obj.key], open(DATA_DIR + "/meshes/dexnet/" + obj.key + ".pkl", 'wb')) # Save grasp metrics candidate_grasp_info = candidate_grasps_dict[obj.key][ stable_pose.id] candidate_grasps = [g.grasp for g in candidate_grasp_info] grasp_metrics = dataset.grasp_metrics(obj.key, candidate_grasps, gripper=gripper.name) write_metrics = json.dumps(grasp_metrics) f = open(DATA_DIR + "/meshes/dexnet/" + obj.key + ".json", "w") f.write(write_metrics) f.close() counter += 1 if num is not None and counter >= num: break with open(DATA_DIR + '/meshes/dexnet/files.csv', 'w') as csv_file: csv_writer = csv.writer(csv_file, delimiter=',') for point in files: csv_writer.writerow(point)
from meshpy import VirtualCamera, ObjFile, SceneObject from perception import CameraIntrinsics from visualization import Visualizer2D from core import RigidTransform import numpy as np from matplotlib import pyplot as plt from perception.object_render import RenderMode dexnet_path = "/home/chris/optimal_manipulation_simulator/dex-net-new-api" if __name__ == "__main__": print "\n\n\n\n" camera_intr = CameraIntrinsics.load("../config/primesense_overhead.intr") camera = VirtualCamera(camera_intr) of = ObjFile(dexnet_path + "/data/meshes/chess_pieces/WizRook.obj") rook1 = of.read() T_world_camera = RigidTransform(rotation=np.array([[-1, 0, 0], [0, 1, 0], [0, 0, -1]]), translation=np.array([0, 0, .2]).T, from_frame="world", to_frame="primesense_overhead") # T_world_camera = RigidTransform(rotation = np.array([[1,0,0],[0,1,0],[0,0,1]]), # translation=np.array([-.2,0,0]).T, # from_frame="world", # to_frame="primesense_overhead") # squares = [(-1,-1), (-1,0), (-1,1), (0,-1), (0,1), (1,-1), (1,0), (1,1)] # for i, square in enumerate(squares):
output_path = os.path.join(config['calib_dir'], T_world_obj.from_frame) if not os.path.exists(output_path): os.makedirs(output_path) output_filename = os.path.join( output_path, '{0}_to_world.tf'.format(T_world_obj.from_frame)) print T_world_obj T_world_obj.save(output_filename) if config['vis'] and VIS_SUPPORTED: _, depth_im, _ = sensor.frames() pc_cam = ir_intrinsics.deproject(depth_im) pc_world = T_world_cam * pc_cam mesh_file = ObjFile( os.path.join(object_path, '{0}.obj'.format(args.object_name))) mesh = mesh_file.read() vis.figure(bgcolor=(0.7, 0.7, 0.7)) vis.mesh(mesh, T_world_obj.as_frames('obj', 'world'), style='surface') vis.pose(T_world_obj, alpha=0.04, tube_radius=0.002, center_scale=0.01) vis.pose(RigidTransform(from_frame='origin'), alpha=0.04, tube_radius=0.002, center_scale=0.01) vis.pose(T_world_cam, alpha=0.04, tube_radius=0.002, center_scale=0.01) vis.pose(T_world_cam * T_cb_cam.inverse(), alpha=0.04, tube_radius=0.002, center_scale=0.01) vis.points(pc_world, subsample=20)
import os import random import sys from autolab_core import Point, RigidTransform from meshpy import ObjFile, Mesh3D from visualization import Visualizer3D as vis if __name__ == '__main__': mesh_name = sys.argv[1] #np.random.seed(111) #random.seed(111) # read mesh mesh = ObjFile(mesh_name).read() mesh.vertices_ = np.load('../dex-net/data/meshes/lego_vertices.npy') mesh.center_of_mass = np.load('../dex-net/data/meshes/lego_com.npy') #T_obj_table = RigidTransform(rotation=[0.92275663, 0.13768089, 0.35600924, -0.05311874], # from_frame='obj', to_frame='table') T_obj_table = RigidTransform( rotation=[-0.1335021, 0.87671711, 0.41438141, 0.20452958], from_frame='obj', to_frame='table') stable_pose = mesh.resting_pose(T_obj_table) #print stable_pose.r table_dim = 0.3
y_axis = c2 - c1 y_axis = y_axis / np.linalg.norm(y_axis) z_axis = np.array([y_axis[1], -y_axis[0], 0]) # the z axis will always be in the table plane for now z_axis = z_axis / np.linalg.norm(z_axis) x_axis = np.cross(y_axis, z_axis) # convert to hand pose R_obj_gripper = np.array([x_axis, y_axis, z_axis]).T t_obj_gripper = center return RigidTransform(rotation=R_obj_gripper, translation=t_obj_gripper, from_frame='gripper', to_frame='obj') if __name__ == '__main__': of = ObjFile(SPRAY_BOTTLE_MESH_FILENAME) mesh = of.read() vertices = mesh.vertices triangles = mesh.triangles normals = mesh.normals print 'Num vertices:', len(vertices) print 'Num triangles:', len(triangles) print 'Num normals:', len(normals) # 1. Generate candidate pairs of contact points # 2. Check for force closure # 3. Convert each grasp to a hand pose
logging.getLogger().setLevel(logging.INFO) # read args parser = argparse.ArgumentParser(description='Convert a mesh to a URDF') parser.add_argument('mesh_filename', type=str, help='OBJ filename of the mesh to convert') parser.add_argument('output_dir', type=str, help='directory to store output urdf in') parser.add_argument('--config', type=str, default='cfg/tools/convex_decomposition.yaml', help='config file for urdf conversion') args = parser.parse_args() # open config config_filename = args.config config = YamlConfig(config_filename) # check valid mesh filename mesh_filename = args.mesh_filename mesh_root, mesh_ext = os.path.splitext(mesh_filename) if mesh_ext.lower() != OBJ_EXT: logging.error('Extension %s not supported' %(mesh_ext)) exit(0) # open mesh of = ObjFile(mesh_filename) mesh = of.read() mesh.density = config['object_density'] # create output dir for urdf output_dir = args.output_dir writer = UrdfWriter(output_dir) writer.write(mesh)
def _set_table_mesh(self): return ObjFile(self._table_mesh_filename).read()
config = YamlConfig(config_filename) database = Hdf5Database(config['database_name'], access_level=READ_ONLY_ACCESS) target_object_keys = config['target_objects'] # Setup collision checking table_offset = config['collision_checking']['table_offset'] table_mesh_filename = config['collision_checking']['table_mesh_filename'] if not os.path.isabs(table_mesh_filename): table_mesh_filename = os.path.join(DATA_DIR, table_mesh_filename) dataset_names = target_object_keys.keys() datasets = [database.dataset(dn) for dn in dataset_names] table_mesh = ObjFile(table_mesh_filename).read() # iterate through all object keys dataset = datasets[0] obj_key = dataset.object_keys[0] obj = dataset[obj_key] # read in the stable poses of the mesh stable_poses = dataset.stable_poses(obj.key) stable_pose = stable_poses[0] # setup table in collision checker T_obj_stp = stable_pose.T_obj_table.as_frames('obj', 'stp') T_obj_table = obj.mesh.get_T_surface_obj(T_obj_stp, delta=table_offset).as_frames( 'obj', 'table')
args = parser.parse_args() image_filename = args.input_image extrusion = args.extrusion scale_factor = args.scale_factor output_filename = args.output_filename # read the image binary_im = BinaryImage.open(image_filename) sdf = binary_im.to_sdf() #plt.figure() #plt.imshow(sdf) #plt.show() # convert to a mesh mesh = ImageToMeshConverter.binary_image_to_mesh(binary_im, extrusion=extrusion, scale_factor=scale_factor) vis.figure() vis.mesh(mesh) vis.show() # optionally save if output_filename is not None: file_root, file_ext = os.path.splitext(output_filename) binary_im.save(file_root + '.jpg') ObjFile(file_root + '.obj').write(mesh) np.savetxt(file_root + '.csv', sdf, delimiter=',', header='%d %d' % (sdf.shape[0], sdf.shape[1]))
# parse args logging.getLogger().setLevel(logging.INFO) parser = argparse.ArgumentParser() parser.add_argument('mesh_filename', type=str, help='filename for .OBJ mesh file to render') args = parser.parse_args() vis_normals = False # read data mesh_filename = args.mesh_filename _, mesh_ext = os.path.splitext(mesh_filename) if mesh_ext != '.obj': raise ValueError('Must provide mesh in Wavefront .OBJ format!') orig_mesh = ObjFile(mesh_filename).read() mesh = orig_mesh.subdivide(min_tri_length=0.01) mesh.compute_vertex_normals() stable_poses = mesh.stable_poses() if vis_normals: vis3d.figure() vis3d.mesh(mesh) vis3d.normals(NormalCloud(mesh.normals.T), PointCloud(mesh.vertices.T), subsample=10) vis3d.show() d = utils.sqrt_ceil(len(stable_poses)) vis.figure(size=(16, 16))