Beispiel #1
0
def run_task(snapshot_config, *_):
    """Run task.

    Args:
        snapshot_config (metarl.experiment.SnapshotConfig): The snapshot
            configuration used by LocalRunner to create the snapshotter.

        _ (object): Ignored by this function.

    """
    with LocalTFRunner(snapshot_config=snapshot_config) as runner:
        env1 = TfEnv(normalize(PointEnv(goal=(-1., 0.))))
        env2 = TfEnv(normalize(PointEnv(goal=(1., 0.))))
        env = MultiEnvWrapper([env1, env2])

        policy = GaussianMLPPolicy(env_spec=env.spec)

        baseline = LinearFeatureBaseline(env_spec=env.spec)

        algo = TRPO(env_spec=env.spec,
                    policy=policy,
                    baseline=baseline,
                    max_path_length=100,
                    discount=0.99,
                    gae_lambda=0.95,
                    lr_clip_range=0.2,
                    policy_ent_coeff=0.0)

        runner.setup(algo, env)
        runner.train(n_epochs=40, batch_size=2048, plot=False)
Beispiel #2
0
def multi_env_trpo(ctxt=None, seed=1):
    """Train TRPO on two different PointEnv instances.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.

    """
    set_seed(seed)
    with LocalTFRunner(ctxt) as runner:
        env1 = MetaRLEnv(normalize(PointEnv(goal=(-1., 0.))))
        env2 = MetaRLEnv(normalize(PointEnv(goal=(1., 0.))))
        env = MultiEnvWrapper([env1, env2])

        policy = GaussianMLPPolicy(env_spec=env.spec)

        baseline = LinearFeatureBaseline(env_spec=env.spec)

        algo = TRPO(env_spec=env.spec,
                    policy=policy,
                    baseline=baseline,
                    max_path_length=100,
                    discount=0.99,
                    gae_lambda=0.95,
                    lr_clip_range=0.2,
                    policy_ent_coeff=0.0)

        runner.setup(algo, env)
        runner.train(n_epochs=40, batch_size=2048, plot=False)
Beispiel #3
0
def maml_trpo_metaworld_ml10(ctxt, seed, epochs, rollouts_per_task,
                             meta_batch_size):
    """Set up environment and algorithm and run the task.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        epochs (int): Number of training epochs.
        rollouts_per_task (int): Number of rollouts per epoch per task
            for training.
        meta_batch_size (int): Number of tasks sampled per batch.

    """
    set_seed(seed)
    env = MetaRLEnv(
        normalize(mwb.ML10.get_train_tasks(), expected_action_scale=10.))

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(100, 100),
        hidden_nonlinearity=torch.tanh,
        output_nonlinearity=None,
    )

    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_sizes=(32, 32),
                                              hidden_nonlinearity=torch.tanh,
                                              output_nonlinearity=None)

    max_path_length = 100

    test_task_names = mwb.ML10.get_test_tasks().all_task_names
    test_tasks = [
        MetaRLEnv(
            normalize(mwb.ML10.from_task(task), expected_action_scale=10.))
        for task in test_task_names
    ]
    test_sampler = EnvPoolSampler(test_tasks)

    meta_evaluator = MetaEvaluator(test_task_sampler=test_sampler,
                                   max_path_length=max_path_length,
                                   n_test_tasks=len(test_task_names))

    runner = LocalRunner(ctxt)
    algo = MAMLTRPO(env=env,
                    policy=policy,
                    value_function=value_function,
                    max_path_length=max_path_length,
                    meta_batch_size=meta_batch_size,
                    discount=0.99,
                    gae_lambda=1.,
                    inner_lr=0.1,
                    num_grad_updates=1,
                    meta_evaluator=meta_evaluator)

    runner.setup(algo, env)
    runner.train(n_epochs=epochs,
                 batch_size=rollouts_per_task * max_path_length)
def maml_vpg_half_cheetah_dir(ctxt, seed, epochs, rollouts_per_task,
                              meta_batch_size):
    """Set up environment and algorithm and run the task.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        epochs (int): Number of training epochs.
        rollouts_per_task (int): Number of rollouts per epoch per task
            for training.
        meta_batch_size (int): Number of tasks sampled per batch.

    """
    set_seed(seed)
    env = MetaRLEnv(normalize(HalfCheetahDirEnv(), expected_action_scale=10.))

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(64, 64),
        hidden_nonlinearity=torch.tanh,
        output_nonlinearity=None,
    )

    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_sizes=(32, 32),
                                              hidden_nonlinearity=torch.tanh,
                                              output_nonlinearity=None)

    max_path_length = 100

    task_sampler = SetTaskSampler(lambda: MetaRLEnv(
        normalize(HalfCheetahDirEnv(), expected_action_scale=10.)))

    meta_evaluator = MetaEvaluator(test_task_sampler=task_sampler,
                                   max_path_length=max_path_length,
                                   n_test_tasks=1,
                                   n_test_rollouts=10)

    runner = LocalRunner(ctxt)
    algo = MAMLVPG(env=env,
                   policy=policy,
                   value_function=value_function,
                   max_path_length=max_path_length,
                   meta_batch_size=meta_batch_size,
                   discount=0.99,
                   gae_lambda=1.,
                   inner_lr=0.1,
                   num_grad_updates=1,
                   meta_evaluator=meta_evaluator)

    runner.setup(algo, env)
    runner.train(n_epochs=epochs,
                 batch_size=rollouts_per_task * max_path_length)
 def setup_method(self):
     super().setup_method()
     self.max_path_length = 100
     self.meta_batch_size = 10
     self.episode_per_task = 4
     self.tasks = task_sampler.SetTaskSampler(
         lambda: RL2Env(env=normalize(HalfCheetahDirEnv())))
     self.env_spec = RL2Env(env=normalize(HalfCheetahDirEnv())).spec
     self.policy = GaussianGRUPolicy(env_spec=self.env_spec,
                                     hidden_dim=64,
                                     state_include_action=False)
     self.baseline = LinearFeatureBaseline(env_spec=self.env_spec)
    def test_benchmark_pearl(self):
        '''
        Compare benchmarks between metarl and baselines.
        :return:
        '''
        env_sampler = SetTaskSampler(
            lambda: MetaRLEnv(normalize(ML1.get_train_tasks('reach-v1'))))
        env = env_sampler.sample(params['num_train_tasks'])
        test_env_sampler = SetTaskSampler(
            lambda: MetaRLEnv(normalize(ML1.get_test_tasks('reach-v1'))))
        test_env = test_env_sampler.sample(params['num_train_tasks'])
        env_id = 'reach-v1'
        timestamp = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S-%f')
        benchmark_dir = osp.join(os.getcwd(), 'data', 'local', 'benchmarks',
                                 'pearl', timestamp)
        result_json = {}
        seeds = random.sample(range(100), params['n_trials'])
        task_dir = osp.join(benchmark_dir, env_id)
        plt_file = osp.join(benchmark_dir, '{}_benchmark.png'.format(env_id))
        metarl_csvs = []

        for trial in range(params['n_trials']):
            seed = seeds[trial]
            trial_dir = task_dir + '/trial_%d_seed_%d' % (trial + 1, seed)
            metarl_dir = trial_dir + '/metarl'

            metarl_csv = run_metarl(env, test_env, seed, metarl_dir)
            metarl_csvs.append(metarl_csv)

        env.close()

        benchmark_helper.plot_average_over_trials(
            [metarl_csvs],
            ys=['Test/Average/SuccessRate'],
            plt_file=plt_file,
            env_id=env_id,
            x_label='TotalEnvSteps',
            y_label='Test/Average/SuccessRate',
            names=['metarl_pearl'],
        )

        factor_val = params['meta_batch_size'] * params['max_path_length']
        result_json[env_id] = benchmark_helper.create_json(
            [metarl_csvs],
            seeds=seeds,
            trials=params['n_trials'],
            xs=['TotalEnvSteps'],
            ys=['Test/Average/SuccessRate'],
            factors=[factor_val],
            names=['metarl_pearl'])

        Rh.write_file(result_json, 'PEARL')
Beispiel #7
0
    def test_benchmark_maml(self, _):  # pylint: disable=no-self-use
        """Compare benchmarks between metarl and baselines."""
        timestamp = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S-%f')
        benchmark_dir = './data/local/benchmarks/maml-ml1-push/%s/' % timestamp
        result_json = {}
        env_id = 'ML1-Push'
        meta_env = TaskIdWrapper2(ML1WithPinnedGoal.get_train_tasks('push-v1'))

        seeds = random.sample(range(100), hyper_parameters['n_trials'])
        task_dir = osp.join(benchmark_dir, env_id)
        plt_file = osp.join(benchmark_dir, '{}_benchmark.png'.format(env_id))
        promp_csvs = []
        metarl_csvs = []

        for trial in range(hyper_parameters['n_trials']):
            seed = seeds[trial]
            trial_dir = task_dir + '/trial_%d_seed_%d' % (trial + 1, seed)
            metarl_dir = trial_dir + '/metarl'
            promp_dir = trial_dir + '/promp'

            if test_metarl:
                # Run metarl algorithm
                env = MetaRLEnv(normalize(meta_env, expected_action_scale=10.))
                metarl_csv = run_metarl(env, seed, metarl_dir)
                metarl_csvs.append(metarl_csv)
                env.close()
Beispiel #8
0
def vpgis_inverted_pendulum(ctxt=None, seed=1):
    """Train TRPO with InvertedPendulum-v2 environment.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.

    """
    set_seed(seed)
    with LocalTFRunner(ctxt) as runner:
        env = MetaRLEnv(normalize(gym.make('InvertedPendulum-v2')))

        policy = GaussianMLPPolicy(env_spec=env.spec, hidden_sizes=(32, 32))

        baseline = LinearFeatureBaseline(env_spec=env.spec)

        algo = VPG(
            env_spec=env.spec,
            policy=policy,
            baseline=baseline,
            max_path_length=100,
            discount=0.99,
            max_kl_step=0.01,
        )

        runner.setup(algo,
                     env,
                     sampler_cls=ISSampler,
                     sampler_args=dict(n_backtrack=1))
        runner.train(n_epochs=40, batch_size=4000)
Beispiel #9
0
    def test_benchmark_sac(self):
        '''
        Compare benchmarks between metarl and baselines.
        :return:
        '''
        mujoco1m = benchmarks.get_benchmark('Mujoco1M')

        timestamp = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S-%f')
        benchmark_dir = osp.join(os.getcwd(), 'data', 'local', 'benchmarks',
                                 'sac', timestamp)
        mujoco_tasks = ['HalfCheetah-v2']
        for task in mujoco_tasks:
            env = MetaRLEnv(normalize(gym.make(task)))

            seeds = [121, 524, 4]

            task_dir = osp.join(benchmark_dir, task)
            plt_file = osp.join(benchmark_dir, '{}_benchmark.png'.format(task))
            relplt_file = osp.join(benchmark_dir,
                                   '{}_benchmark_mean.png'.format(task))
            metarl_csvs = []

            for trial in range(3):
                env.reset()
                seed = seeds[trial]

                trial_dir = osp.join(
                    task_dir, 'trial_{}_seed_{}'.format(trial + 1, seed))
                metarl_dir = osp.join(trial_dir, 'metarl')
                # Run metarl algorithms
                metarl_csv = run_metarl(env, seed, metarl_dir)
                metarl_csvs.append(metarl_csv)

            env.close()
def ppo_cmb(env, seed, log_dir):
    """Create test continuous mlp baseline on ppo.

    Args:
        env (gym_env): Environment of the task.
        seed (int): Random seed for the trial.
        log_dir (str): Log dir path.

    Returns:
        str: training results in csv format.

    """
    deterministic.set_seed(seed)
    config = tf.ConfigProto(allow_soft_placement=True,
                            intra_op_parallelism_threads=num_proc,
                            inter_op_parallelism_threads=num_proc)
    sess = tf.Session(config=config)
    with LocalTFRunner(snapshot_config, sess=sess,
                       max_cpus=num_proc) as runner:
        env = TfEnv(normalize(env))

        policy = GaussianLSTMPolicy(
            env_spec=env.spec,
            hidden_dim=policy_params['policy_hidden_sizes'],
            hidden_nonlinearity=policy_params['hidden_nonlinearity'],
        )

        baseline = ContinuousMLPBaseline(
            env_spec=env.spec,
            regressor_args=baseline_params['regressor_args'],
        )

        algo = PPO(env_spec=env.spec,
                   policy=policy,
                   baseline=baseline,
                   max_path_length=algo_params['max_path_length'],
                   discount=algo_params['discount'],
                   gae_lambda=algo_params['gae_lambda'],
                   lr_clip_range=algo_params['lr_clip_range'],
                   entropy_method=algo_params['entropy_method'],
                   policy_ent_coeff=algo_params['policy_ent_coeff'],
                   optimizer_args=algo_params['optimizer_args'],
                   center_adv=algo_params['center_adv'],
                   stop_entropy_gradient=True)

        # Set up logger since we are not using run_experiment
        tabular_log_file = osp.join(log_dir, 'progress.csv')
        dowel_logger.add_output(dowel.StdOutput())
        dowel_logger.add_output(dowel.CsvOutput(tabular_log_file))
        dowel_logger.add_output(dowel.TensorBoardOutput(log_dir))

        runner.setup(algo,
                     env,
                     sampler_args=dict(n_envs=algo_params['n_envs']))
        runner.train(n_epochs=algo_params['n_epochs'],
                     batch_size=algo_params['n_rollout_steps'])

        dowel_logger.remove_all()

        return tabular_log_file
Beispiel #11
0
def run_metarl(env, seed, log_dir):
    '''
    Create metarl model and training.
    Replace the ddpg with the algorithm you want to run.
    :param env: Environment of the task.
    :param seed: Random seed for the trial.
    :param log_dir: Log dir path.
    :return:
    '''
    deterministic.set_seed(seed)

    with LocalTFRunner(snapshot_config) as runner:
        env = TfEnv(normalize(env))
        # Set up params for ddpg
        action_noise = OUStrategy(env.spec, sigma=params['sigma'])

        policy = ContinuousMLPPolicy(
            env_spec=env.spec,
            hidden_sizes=params['policy_hidden_sizes'],
            hidden_nonlinearity=tf.nn.relu,
            output_nonlinearity=tf.nn.tanh)

        qf = ContinuousMLPQFunction(env_spec=env.spec,
                                    hidden_sizes=params['qf_hidden_sizes'],
                                    hidden_nonlinearity=tf.nn.relu)

        replay_buffer = SimpleReplayBuffer(
            env_spec=env.spec,
            size_in_transitions=params['replay_buffer_size'],
            time_horizon=params['n_rollout_steps'])

        ddpg = DDPG(env_spec=env.spec,
                    policy=policy,
                    qf=qf,
                    replay_buffer=replay_buffer,
                    steps_per_epoch=params['steps_per_epoch'],
                    policy_lr=params['policy_lr'],
                    qf_lr=params['qf_lr'],
                    target_update_tau=params['tau'],
                    n_train_steps=params['n_train_steps'],
                    discount=params['discount'],
                    min_buffer_size=int(1e4),
                    exploration_strategy=action_noise,
                    policy_optimizer=tf.train.AdamOptimizer,
                    qf_optimizer=tf.train.AdamOptimizer)

        # Set up logger since we are not using run_experiment
        tabular_log_file = osp.join(log_dir, 'progress.csv')
        tensorboard_log_dir = osp.join(log_dir)
        dowel_logger.add_output(dowel.StdOutput())
        dowel_logger.add_output(dowel.CsvOutput(tabular_log_file))
        dowel_logger.add_output(dowel.TensorBoardOutput(tensorboard_log_dir))

        runner.setup(ddpg, env)
        runner.train(n_epochs=params['n_epochs'],
                     batch_size=params['n_rollout_steps'])

        dowel_logger.remove_all()

        return tabular_log_file
    def test_ppo_pendulum(self):
        """Test PPO with Pendulum environment."""
        deterministic.set_seed(0)

        rollouts_per_task = 5
        max_path_length = 100

        task_sampler = SetTaskSampler(lambda: MetaRLEnv(
            normalize(HalfCheetahDirEnv(), expected_action_scale=10.)))

        meta_evaluator = MetaEvaluator(test_task_sampler=task_sampler,
                                       max_path_length=max_path_length,
                                       n_test_tasks=1,
                                       n_test_rollouts=10)

        runner = LocalRunner(snapshot_config)
        algo = MAMLVPG(env=self.env,
                       policy=self.policy,
                       value_function=self.value_function,
                       max_path_length=max_path_length,
                       meta_batch_size=5,
                       discount=0.99,
                       gae_lambda=1.,
                       inner_lr=0.1,
                       num_grad_updates=1,
                       meta_evaluator=meta_evaluator)

        runner.setup(algo, self.env)
        last_avg_ret = runner.train(n_epochs=10,
                                    batch_size=rollouts_per_task *
                                    max_path_length)

        assert last_avg_ret > -5
def test_maml_trpo_dummy_named_env():
    """Test with dummy environment that has env_name."""
    env = MetaRLEnv(
        normalize(DummyMultiTaskBoxEnv(), expected_action_scale=10.))
    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(64, 64),
        hidden_nonlinearity=torch.tanh,
        output_nonlinearity=None,
    )
    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_sizes=(32, 32))

    rollouts_per_task = 2
    max_path_length = 100

    runner = LocalRunner(snapshot_config)
    algo = MAMLTRPO(env=env,
                    policy=policy,
                    value_function=value_function,
                    max_path_length=max_path_length,
                    meta_batch_size=5,
                    discount=0.99,
                    gae_lambda=1.,
                    inner_lr=0.1,
                    num_grad_updates=1)

    runner.setup(algo, env)
    runner.train(n_epochs=2, batch_size=rollouts_per_task * max_path_length)
def test_maml_trpo_pendulum():
    """Test PPO with Pendulum environment."""
    env = MetaRLEnv(normalize(HalfCheetahDirEnv(), expected_action_scale=10.))
    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(64, 64),
        hidden_nonlinearity=torch.tanh,
        output_nonlinearity=None,
    )
    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_sizes=(32, 32))

    rollouts_per_task = 5
    max_path_length = 100

    runner = LocalRunner(snapshot_config)
    algo = MAMLTRPO(env=env,
                    policy=policy,
                    value_function=value_function,
                    max_path_length=max_path_length,
                    meta_batch_size=5,
                    discount=0.99,
                    gae_lambda=1.,
                    inner_lr=0.1,
                    num_grad_updates=1)

    runner.setup(algo, env)
    last_avg_ret = runner.train(n_epochs=5,
                                batch_size=rollouts_per_task * max_path_length)

    assert last_avg_ret > -5

    env.close()
Beispiel #15
0
def run_task(snapshot_config, *_):
    """Run the job.

    Args:
        snapshot_config (metarl.experiment.SnapshotConfig): Configuration
            values for snapshotting.
        *_ (object): Hyperparameters (unused).

    """
    with LocalTFRunner(snapshot_config=snapshot_config) as runner:
        env = TfEnv(normalize(gym.make('InvertedPendulum-v2')))

        policy = GaussianMLPPolicy(env_spec=env.spec, hidden_sizes=(32, 32))

        baseline = LinearFeatureBaseline(env_spec=env.spec)

        algo = TRPO(env_spec=env.spec,
                    policy=policy,
                    baseline=baseline,
                    max_path_length=100,
                    discount=0.99,
                    max_kl_step=0.01)

        runner.setup(algo,
                     env,
                     sampler_cls=ISSampler,
                     sampler_args=dict(n_backtrack=1))
        runner.train(n_epochs=200, batch_size=4000)
    def test_trpo_cnn_cubecrash(self):
        with LocalTFRunner(snapshot_config, sess=self.sess) as runner:
            env = MetaRLEnv(normalize(gym.make('CubeCrash-v0')))

            policy = CategoricalCNNPolicy(env_spec=env.spec,
                                          filters=((32, (8, 8)), (64, (4, 4))),
                                          strides=(4, 2),
                                          padding='VALID',
                                          hidden_sizes=(32, 32))

            baseline = GaussianCNNBaseline(
                env_spec=env.spec,
                regressor_args=dict(filters=((32, (8, 8)), (64, (4, 4))),
                                    strides=(4, 2),
                                    padding='VALID',
                                    hidden_sizes=(32, 32),
                                    use_trust_region=True))

            algo = TRPO(env_spec=env.spec,
                        policy=policy,
                        baseline=baseline,
                        max_path_length=100,
                        discount=0.99,
                        gae_lambda=0.98,
                        max_kl_step=0.01,
                        policy_ent_coeff=0.0,
                        flatten_input=False)

            runner.setup(algo, env)
            last_avg_ret = runner.train(n_epochs=10, batch_size=2048)
            assert last_avg_ret > -1.5

            env.close()
Beispiel #17
0
 def test_ppo_pendulum_gru(self):
     """Test PPO with Pendulum environment and recurrent policy."""
     with LocalTFRunner(snapshot_config) as runner:
         env = MetaRLEnv(normalize(gym.make('InvertedDoublePendulum-v2')))
         gru_policy = GaussianGRUPolicy(env_spec=env.spec)
         baseline = GaussianMLPBaseline(
             env_spec=env.spec,
             regressor_args=dict(hidden_sizes=(32, 32)),
         )
         algo = PPO(
             env_spec=env.spec,
             policy=gru_policy,
             baseline=baseline,
             max_path_length=100,
             discount=0.99,
             gae_lambda=0.95,
             lr_clip_range=0.2,
             optimizer_args=dict(
                 batch_size=32,
                 max_epochs=10,
             ),
             stop_entropy_gradient=True,
             entropy_method='max',
             policy_ent_coeff=0.02,
             center_adv=False,
         )
         runner.setup(algo, env)
         last_avg_ret = runner.train(n_epochs=10, batch_size=2048)
         assert last_avg_ret > 80
Beispiel #18
0
 def test_ppo_pendulum_flatten_input(self):
     """Test PPO with CartPole to test observation flattening."""
     with LocalTFRunner(snapshot_config, sess=self.sess) as runner:
         env = MetaRLEnv(
             normalize(ReshapeObservation(gym.make('CartPole-v1'), (2, 2))))
         policy = CategoricalMLPPolicy(
             env_spec=env.spec,
             hidden_nonlinearity=tf.nn.tanh,
         )
         baseline = LinearFeatureBaseline(env_spec=env.spec)
         algo = PPO(env_spec=env.spec,
                    policy=policy,
                    baseline=baseline,
                    max_path_length=100,
                    discount=0.99,
                    gae_lambda=0.95,
                    lr_clip_range=0.2,
                    policy_ent_coeff=0.0,
                    optimizer_args=dict(
                        batch_size=32,
                        max_epochs=10,
                        learning_rate=1e-3,
                    ))
         runner.setup(algo, env)
         last_avg_ret = runner.train(n_epochs=10, batch_size=2048)
         assert last_avg_ret > 80
Beispiel #19
0
def her_metarl_tf(ctxt, env_id, seed):
    """Create metarl TensorFlow HER model and training.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the
            snapshotter.
        env_id (str): Environment id of the task.
        seed (int): Random positive integer for the trial.

    """
    deterministic.set_seed(seed)

    with LocalTFRunner(ctxt) as runner:
        env = MetaRLEnv(normalize(gym.make(env_id)))

        policy = ContinuousMLPPolicy(
            env_spec=env.spec,
            hidden_sizes=hyper_parameters['policy_hidden_sizes'],
            hidden_nonlinearity=tf.nn.relu,
            output_nonlinearity=tf.nn.tanh,
        )

        exploration_policy = AddOrnsteinUhlenbeckNoise(
            env_spec=env.spec, policy=policy, sigma=hyper_parameters['sigma'])

        qf = ContinuousMLPQFunction(
            env_spec=env.spec,
            hidden_sizes=hyper_parameters['qf_hidden_sizes'],
            hidden_nonlinearity=tf.nn.relu,
        )

        replay_buffer = HERReplayBuffer(
            env_spec=env.spec,
            capacity_in_transitions=hyper_parameters['replay_buffer_size'],
            replay_k=4,
            reward_fn=env.compute_reward,
        )

        algo = DDPG(
            env_spec=env.spec,
            policy=policy,
            qf=qf,
            replay_buffer=replay_buffer,
            steps_per_epoch=hyper_parameters['steps_per_epoch'],
            policy_lr=hyper_parameters['policy_lr'],
            qf_lr=hyper_parameters['qf_lr'],
            target_update_tau=hyper_parameters['tau'],
            n_train_steps=hyper_parameters['n_train_steps'],
            discount=hyper_parameters['discount'],
            exploration_policy=exploration_policy,
            policy_optimizer=tf.compat.v1.train.AdamOptimizer,
            qf_optimizer=tf.compat.v1.train.AdamOptimizer,
            buffer_batch_size=256,
        )

        runner.setup(algo, env)
        runner.train(n_epochs=hyper_parameters['n_epochs'],
                     batch_size=hyper_parameters['n_rollout_steps'])
 def setup_method(self):
     """Setup method which is called before every test."""
     self.env = MetaRLEnv(normalize(gym.make('InvertedDoublePendulum-v2')))
     self.policy = GaussianMLPPolicy(
         env_spec=self.env.spec,
         hidden_sizes=(64, 64),
         hidden_nonlinearity=torch.tanh,
         output_nonlinearity=None,
     )
     self.value_function = GaussianMLPValueFunction(env_spec=self.env.spec)
def gaussian_gru_policy(ctxt, env_id, seed):
    """Create Gaussian GRU Policy on TF-PPO.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the
            snapshotter.
        env_id (str): Environment id of the task.
        seed (int): Random positive integer for the trial.

    """
    deterministic.set_seed(seed)

    with LocalTFRunner(ctxt) as runner:
        env = MetaRLEnv(normalize(gym.make(env_id)))

        policy = GaussianGRUPolicy(
            env_spec=env.spec,
            hidden_dim=32,
            hidden_nonlinearity=tf.nn.tanh,
            output_nonlinearity=None,
        )

        baseline = GaussianMLPBaseline(
            env_spec=env.spec,
            regressor_args=dict(
                hidden_sizes=(64, 64),
                use_trust_region=False,
                optimizer=FirstOrderOptimizer,
                optimizer_args=dict(
                    batch_size=32,
                    max_epochs=10,
                    learning_rate=1e-3,
                ),
            ),
        )

        algo = PPO(
            env_spec=env.spec,
            policy=policy,
            baseline=baseline,
            max_path_length=100,
            discount=0.99,
            gae_lambda=0.95,
            lr_clip_range=0.2,
            policy_ent_coeff=0.0,
            optimizer_args=dict(
                batch_size=32,
                max_epochs=10,
                learning_rate=1e-3,
            ),
        )

        runner.setup(algo, env, sampler_args=dict(n_envs=12))
        runner.train(n_epochs=5, batch_size=2048)
Beispiel #22
0
 def setup_method(self):
     """Setup method which is called before every test."""
     self.env = MetaRLEnv(
         normalize(HalfCheetahDirEnv(), expected_action_scale=10.))
     self.policy = GaussianMLPPolicy(
         env_spec=self.env.spec,
         hidden_sizes=(64, 64),
         hidden_nonlinearity=torch.tanh,
         output_nonlinearity=None,
     )
     self.baseline = LinearFeatureBaseline(env_spec=self.env.spec)
Beispiel #23
0
def tf_ppo_pendulum(ctxt=None, seed=1):
    """Train PPO with InvertedDoublePendulum-v2 environment.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.

    """
    set_seed(seed)
    with LocalTFRunner(snapshot_config=ctxt) as runner:
        env = TfEnv(normalize(gym.make('InvertedDoublePendulum-v2')))

        policy = GaussianMLPPolicy(
            env_spec=env.spec,
            hidden_sizes=(64, 64),
            hidden_nonlinearity=tf.nn.tanh,
            output_nonlinearity=None,
        )

        baseline = GaussianMLPBaseline(
            env_spec=env.spec,
            regressor_args=dict(
                hidden_sizes=(64, 64),
                use_trust_region=True,
            ),
        )

        # NOTE: make sure when setting entropy_method to 'max', set
        # center_adv to False and turn off policy gradient. See
        # tf.algos.NPO for detailed documentation.
        algo = RL2PPO(
            env_spec=env.spec,
            policy=policy,
            baseline=baseline,
            max_path_length=100,
            discount=0.99,
            gae_lambda=0.95,
            lr_clip_range=0.2,
            optimizer_args=dict(
                batch_size=32,
                max_epochs=10,
                learning_rate=1e-3,
            ),
            stop_entropy_gradient=True,
            entropy_method='max',
            policy_ent_coeff=0.002,
            center_adv=False,
        )

        runner.setup(algo, env)

        runner.train(n_epochs=120, batch_size=4096, plot=False)
Beispiel #24
0
def sac_half_cheetah_batch(ctxt=None, seed=1):
    """Set up environment and algorithm and run the task.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.

    """
    deterministic.set_seed(seed)
    runner = LocalRunner(snapshot_config=ctxt)
    env = MetaRLEnv(normalize(gym.make('HalfCheetah-v2')))

    policy = TanhGaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=[256, 256],
        hidden_nonlinearity=nn.ReLU,
        output_nonlinearity=None,
        min_std=np.exp(-20.),
        max_std=np.exp(2.),
    )

    qf1 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[256, 256],
                                 hidden_nonlinearity=F.relu)

    qf2 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[256, 256],
                                 hidden_nonlinearity=F.relu)

    replay_buffer = PathBuffer(capacity_in_transitions=int(1e6))

    sac = SAC(env_spec=env.spec,
              policy=policy,
              qf1=qf1,
              qf2=qf2,
              gradient_steps_per_itr=1000,
              max_path_length=500,
              replay_buffer=replay_buffer,
              min_buffer_size=1e4,
              target_update_tau=5e-3,
              discount=0.99,
              buffer_batch_size=256,
              reward_scale=1.,
              steps_per_epoch=1)

    if torch.cuda.is_available():
        set_gpu_mode(True)
    else:
        set_gpu_mode(False)
    sac.to()
    runner.setup(algo=sac, env=env, sampler_cls=LocalSampler)
    runner.train(n_epochs=1000, batch_size=1000)
def ppo_memorize_digits(ctxt=None, seed=1, batch_size=4000):
    """Train PPO on MemorizeDigits-v0 environment.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        batch_size (int): Number of timesteps to use in each training step.

    """
    set_seed(seed)
    with LocalTFRunner(ctxt) as runner:
        env = MetaRLEnv(normalize(gym.make('MemorizeDigits-v0')),
                        is_image=True)
        policy = CategoricalCNNPolicy(env_spec=env.spec,
                                      filters=(
                                                  (32, (5, 5)),
                                                  (64, (3, 3)),
                                                  (64, (2, 2)),
                                              ),
                                      strides=(4, 2, 1),
                                      padding='VALID',
                                      hidden_sizes=(256, ))  # yapf: disable

        baseline = GaussianCNNBaseline(
            env_spec=env.spec,
            regressor_args=dict(filters=(
                                            (32, (5, 5)),
                                            (64, (3, 3)),
                                            (64, (2, 2)),
                                        ),
                                strides=(4, 2, 1),
                                padding='VALID',
                                hidden_sizes=(256, ),
                                use_trust_region=True))  # yapf: disable

        algo = PPO(env_spec=env.spec,
                   policy=policy,
                   baseline=baseline,
                   max_path_length=100,
                   discount=0.99,
                   gae_lambda=0.95,
                   lr_clip_range=0.2,
                   policy_ent_coeff=0.0,
                   optimizer_args=dict(
                       batch_size=32,
                       max_epochs=10,
                       learning_rate=1e-3,
                   ),
                   flatten_input=False)

        runner.setup(algo, env)
        runner.train(n_epochs=1000, batch_size=batch_size)
def ppo_metarl_tf(ctxt, env_id, seed):
    """Create metarl TensorFlow PPO model and training.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the
            snapshotter.
        env_id (str): Environment id of the task.
        seed (int): Random positive integer for the trial.

    """
    deterministic.set_seed(seed)

    with LocalTFRunner(ctxt) as runner:
        env = MetaRLEnv(normalize(gym.make(env_id)))

        policy = TF_GMP(
            env_spec=env.spec,
            hidden_sizes=(32, 32),
            hidden_nonlinearity=tf.nn.tanh,
            output_nonlinearity=None,
        )

        baseline = TF_GMB(
            env_spec=env.spec,
            regressor_args=dict(
                hidden_sizes=(32, 32),
                use_trust_region=False,
                optimizer=FirstOrderOptimizer,
                optimizer_args=dict(
                    batch_size=32,
                    max_epochs=10,
                    learning_rate=3e-4,
                ),
            ),
        )

        algo = TF_PPO(env_spec=env.spec,
                      policy=policy,
                      baseline=baseline,
                      max_path_length=hyper_parameters['max_path_length'],
                      discount=0.99,
                      gae_lambda=0.95,
                      center_adv=True,
                      lr_clip_range=0.2,
                      optimizer_args=dict(batch_size=32,
                                          max_epochs=10,
                                          learning_rate=3e-4,
                                          verbose=True))

        runner.setup(algo, env)
        runner.train(n_epochs=hyper_parameters['n_epochs'],
                     batch_size=hyper_parameters['batch_size'])
def continuous_mlp_q_function(ctxt, env_id, seed):
    """Create Continuous MLP QFunction on TF-DDPG.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the
            snapshotter.
        env_id (str): Environment id of the task.
        seed (int): Random positive integer for the trial.

    """
    deterministic.set_seed(seed)

    with LocalTFRunner(ctxt, max_cpus=12) as runner:
        env = MetaRLEnv(normalize(gym.make(env_id)))

        policy = ContinuousMLPPolicy(
            env_spec=env.spec,
            name='ContinuousMLPPolicy',
            hidden_sizes=hyper_params['policy_hidden_sizes'],
            hidden_nonlinearity=tf.nn.relu,
            output_nonlinearity=tf.nn.tanh)

        exploration_policy = AddOrnsteinUhlenbeckNoise(
            env.spec, policy, sigma=hyper_params['sigma'])

        qf = ContinuousMLPQFunction(
            env_spec=env.spec,
            hidden_sizes=hyper_params['qf_hidden_sizes'],
            hidden_nonlinearity=tf.nn.relu,
            name='ContinuousMLPQFunction')

        replay_buffer = PathBuffer(
            capacity_in_transitions=hyper_params['replay_buffer_size'])

        ddpg = DDPG(env_spec=env.spec,
                    policy=policy,
                    qf=qf,
                    replay_buffer=replay_buffer,
                    steps_per_epoch=hyper_params['steps_per_epoch'],
                    policy_lr=hyper_params['policy_lr'],
                    qf_lr=hyper_params['qf_lr'],
                    target_update_tau=hyper_params['tau'],
                    n_train_steps=hyper_params['n_train_steps'],
                    discount=hyper_params['discount'],
                    min_buffer_size=int(1e4),
                    exploration_policy=exploration_policy,
                    policy_optimizer=tf.compat.v1.train.AdamOptimizer,
                    qf_optimizer=tf.compat.v1.train.AdamOptimizer)

        runner.setup(ddpg, env, sampler_args=dict(n_envs=12))
        runner.train(n_epochs=hyper_params['n_epochs'],
                     batch_size=hyper_params['n_rollout_steps'])
def run_metarl(env, seed, log_dir):
    '''
    Create metarl model and training.
    Replace the ppo with the algorithm you want to run.
    :param env: Environment of the task.
    :param seed: Random seed for the trial.
    :param log_dir: Log dir path.
    :return:
    '''
    deterministic.set_seed(seed)
    config = tf.ConfigProto(allow_soft_placement=True,
                            intra_op_parallelism_threads=12,
                            inter_op_parallelism_threads=12)
    sess = tf.Session(config=config)
    with LocalTFRunner(snapshot_config, sess=sess, max_cpus=12) as runner:
        env = TfEnv(normalize(env))

        policy = CategoricalLSTMPolicy(
            env_spec=env.spec,
            hidden_dim=32,
            hidden_nonlinearity=tf.nn.tanh,
        )

        baseline = LinearFeatureBaseline(env_spec=env.spec)

        algo = PPO(
            env_spec=env.spec,
            policy=policy,
            baseline=baseline,
            max_path_length=100,
            discount=0.99,
            gae_lambda=0.95,
            lr_clip_range=0.2,
            policy_ent_coeff=0.0,
            optimizer_args=dict(
                batch_size=32,
                max_epochs=10,
                tf_optimizer_args=dict(learning_rate=1e-3),
            ),
        )

        # Set up logger since we are not using run_experiment
        tabular_log_file = osp.join(log_dir, 'progress.csv')
        dowel_logger.add_output(dowel.StdOutput())
        dowel_logger.add_output(dowel.CsvOutput(tabular_log_file))
        dowel_logger.add_output(dowel.TensorBoardOutput(log_dir))

        runner.setup(algo, env, sampler_args=dict(n_envs=12))
        runner.train(n_epochs=488, batch_size=2048)
        dowel_logger.remove_all()

        return tabular_log_file
Beispiel #29
0
def categorical_cnn_policy(ctxt, env_id, seed):
    """Create Categorical CNN Policy on TF-PPO.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the
            snapshotter.
        env_id (str): Environment id of the task.
        seed (int): Random positive integer for the trial.

    """
    deterministic.set_seed(seed)

    with LocalTFRunner(ctxt, max_cpus=12) as runner:
        env = MetaRLEnv(normalize(gym.make(env_id)))

        policy = CategoricalCNNPolicy(
            env_spec=env.spec,
            conv_filters=hyper_params['conv_filters'],
            conv_strides=hyper_params['conv_strides'],
            conv_pad=hyper_params['conv_pad'],
            hidden_sizes=hyper_params['hidden_sizes'])

        baseline = GaussianCNNBaseline(
            env_spec=env.spec,
            regressor_args=dict(
                filters=hyper_params['conv_filters'],
                strides=hyper_params['conv_strides'],
                padding=hyper_params['conv_pad'],
                hidden_sizes=hyper_params['hidden_sizes'],
                use_trust_region=hyper_params['use_trust_region']))

        algo = PPO(
            env_spec=env.spec,
            policy=policy,
            baseline=baseline,
            max_path_length=100,
            discount=0.99,
            gae_lambda=0.95,
            lr_clip_range=0.2,
            policy_ent_coeff=0.0,
            optimizer_args=dict(
                batch_size=32,
                max_epochs=10,
                learning_rate=1e-3,
            ),
            flatten_input=False,
        )

        runner.setup(algo, env)
        runner.train(n_epochs=hyper_params['n_epochs'],
                     batch_size=hyper_params['batch_size'])
 def setup_method(self):
     super().setup_method()
     self.env = MetaRLEnv(normalize(gym.make('InvertedDoublePendulum-v2')))
     self.policy = GaussianMLPPolicy(
         env_spec=self.env.spec,
         hidden_sizes=(64, 64),
         hidden_nonlinearity=tf.nn.tanh,
         output_nonlinearity=None,
     )
     self.baseline = GaussianMLPBaseline(
         env_spec=self.env.spec,
         regressor_args=dict(hidden_sizes=(32, 32)),
     )