def bootstrap_ISD(name_site_combo, model, in_dir = './data/', out_dir = './out_files/', Niter = 200):
    """A general function of bootstrapping for ISD applying to all four models. 
    
    Inputs:
    name_site_combo: a list with dat_name and site
    model - takes one of four values 'ssnt_0', 'ssnt_1', 'asne', or 'agsne'
    in_dir - directory of raw data
    out_dir - directory used both in input (obs_pred.csv file) and output 
    Niter - number of bootstrap samples
    
    Output:
    Writes to disk, with one file for R^2 and one for KS statistic.
    
    """
    dat_name, site = name_site_combo
    dat = wk.import_raw_data(in_dir + dat_name + '.csv')
    dat_site = dat[dat['site'] == site]
    dat_clean = clean_data_agsne(dat_site)    
    G, S, N, E = get_GSNE(dat_clean)
    lambda1, beta, lambda3 = agsne.get_agsne_lambdas(G, S, N, E)
    isd_agsne = mete_distributions.psi_agsne([G, S, N, E], [lambda1, beta, lambda3, agsne.agsne_lambda3_z(lambda1, beta, S) / lambda3])
    isd_asne = mete_distributions.psi_epsilon_approx(S, N, E)
    dbh_scaled = np.array(dat_clean['dbh'] / min(dat_clean['dbh']))
    isd_ssnt_0 = ssnt_isd_bounded(1, N / (sum(dbh_scaled ** 1) - N))
    isd_ssnt_1 = ssnt_isd_bounded(2/3, N / (sum(dbh_scaled ** (2/3)) - N))
    dist_for_model = {'ssnt_0': isd_ssnt_0, 'ssnt_1': isd_ssnt_1, 'asne': isd_asne, 'agsne': isd_agsne}
    dist = dist_for_model[model]
    pred_obs = wk.import_obs_pred_data(out_dir + dat_name + '_obs_pred_isd_' + model + '.csv')
    pred = pred_obs[pred_obs['site'] == site]['pred']
    obs = pred_obs[pred_obs['site'] == site]['obs']
    
    out_list_rsquare = [dat_name, site, str(mtools.obs_pred_rsquare(np.log10(obs), np.log10(pred)))]
    wk.write_to_file(out_dir + 'ISD_bootstrap_' + model + '_rsquare.txt', ",".join(str(x) for x in out_list_rsquare), new_line = False)
    emp_cdf = mtools.get_emp_cdf(obs)
    out_list_ks = [dat_name, site, str(max(abs(emp_cdf - np.array([dist.cdf(x) for x in obs]))))]
    wk.write_to_file(out_dir + 'ISD_bootstrap_' + model + '_ks.txt', ",".join(str(x) for x in out_list_ks), new_line = False)
    
    num_pools = 8  # Assuming that 8 pools are to be created
    for i in xrange(Niter):
        obs_boot = []
        cdf_boot = []
        while len(obs_boot) < N:
            pool = multiprocessing.Pool(num_pools)
            out_sample = pool.map(wk.generate_isd_sample, [dist for j in xrange(num_pools)])
            for combo in out_sample:
                cdf_sublist, sample_sublist = combo
                obs_boot.extend(sample_sublist)
                cdf_boot.extend(cdf_sublist)
            pool.close()
            pool.join()
        if model in ['asne', 'agsne']: obs_boot = np.sort(obs_boot[:N]) ** 0.5 # Convert to diameter
        else: obs_boot = np.sort(obs_boot[:N])
        sample_rsquare = mtools.obs_pred_rsquare(np.log10(obs_boot), np.log10(pred))
        sample_ks = max(abs(emp_cdf - np.sort(cdf_boot[:N])))
        
        wk.write_to_file(out_dir + 'ISD_bootstrap_' + model + '_rsquare.txt', "".join([',', str(sample_rsquare)]), new_line = False)
        wk.write_to_file(out_dir + 'ISD_bootstrap_' + model + '_ks.txt', "".join([',', str(sample_ks)]), new_line = False)
    
    wk.write_to_file(out_dir + 'ISD_bootstrap_' + model + '_rsquare.txt', '\t')
    wk.write_to_file(out_dir + 'ISD_bootstrap_' + model + '_ks.txt', '\t')
    wk.write_to_file(out_dir + 'ISD_bootstrap_' + model + '_ks.txt', ",".join(str(x) for x in out_list_ks))
def bootstrap_ISD(name_site_combo,
                  model,
                  in_dir='./data/',
                  out_dir='./out_files/',
                  Niter=200):
    """A general function of bootstrapping for ISD applying to all four models. 
    
    Inputs:
    name_site_combo: a list with dat_name and site
    model - takes one of four values 'ssnt_0', 'ssnt_1', 'asne', or 'agsne'
    in_dir - directory of raw data
    out_dir - directory used both in input (obs_pred.csv file) and output 
    Niter - number of bootstrap samples
    
    Output:
    Writes to disk, with one file for R^2 and one for KS statistic.
    
    """
    dat_name, site = name_site_combo
    dat = wk.import_raw_data(in_dir + dat_name + '.csv')
    dat_site = dat[dat['site'] == site]
    dat_clean = clean_data_agsne(dat_site)
    G, S, N, E = get_GSNE(dat_clean)
    lambda1, beta, lambda3 = agsne.get_agsne_lambdas(G, S, N, E)
    isd_agsne = mete_distributions.psi_agsne([G, S, N, E], [
        lambda1, beta, lambda3,
        agsne.agsne_lambda3_z(lambda1, beta, S) / lambda3
    ])
    isd_asne = mete_distributions.psi_epsilon_approx(S, N, E)
    dbh_scaled = np.array(dat_clean['dbh'] / min(dat_clean['dbh']))
    isd_ssnt_0 = ssnt_isd_bounded(1, N / (sum(dbh_scaled**1) - N))
    isd_ssnt_1 = ssnt_isd_bounded(2 / 3, N / (sum(dbh_scaled**(2 / 3)) - N))
    dist_for_model = {
        'ssnt_0': isd_ssnt_0,
        'ssnt_1': isd_ssnt_1,
        'asne': isd_asne,
        'agsne': isd_agsne
    }
    dist = dist_for_model[model]
    pred_obs = wk.import_obs_pred_data(out_dir + dat_name + '_obs_pred_isd_' +
                                       model + '.csv')
    pred = pred_obs[pred_obs['site'] == site]['pred']
    obs = pred_obs[pred_obs['site'] == site]['obs']

    out_list_rsquare = [
        dat_name, site,
        str(mtools.obs_pred_rsquare(np.log10(obs), np.log10(pred)))
    ]
    wk.write_to_file(out_dir + 'ISD_bootstrap_' + model + '_rsquare.txt',
                     ",".join(str(x) for x in out_list_rsquare),
                     new_line=False)
    emp_cdf = mtools.get_emp_cdf(obs)
    out_list_ks = [
        dat_name, site,
        str(max(abs(emp_cdf - np.array([dist.cdf(x) for x in obs]))))
    ]
    wk.write_to_file(out_dir + 'ISD_bootstrap_' + model + '_ks.txt',
                     ",".join(str(x) for x in out_list_ks),
                     new_line=False)

    num_pools = 8  # Assuming that 8 pools are to be created
    for i in xrange(Niter):
        obs_boot = []
        cdf_boot = []
        while len(obs_boot) < N:
            pool = multiprocessing.Pool(num_pools)
            out_sample = pool.map(wk.generate_isd_sample,
                                  [dist for j in xrange(num_pools)])
            for combo in out_sample:
                cdf_sublist, sample_sublist = combo
                obs_boot.extend(sample_sublist)
                cdf_boot.extend(cdf_sublist)
            pool.close()
            pool.join()
        if model in ['asne', 'agsne']:
            obs_boot = np.sort(obs_boot[:N])**0.5  # Convert to diameter
        else:
            obs_boot = np.sort(obs_boot[:N])
        sample_rsquare = mtools.obs_pred_rsquare(np.log10(obs_boot),
                                                 np.log10(pred))
        sample_ks = max(abs(emp_cdf - np.sort(cdf_boot[:N])))

        wk.write_to_file(out_dir + 'ISD_bootstrap_' + model + '_rsquare.txt',
                         "".join([',', str(sample_rsquare)]),
                         new_line=False)
        wk.write_to_file(out_dir + 'ISD_bootstrap_' + model + '_ks.txt',
                         "".join([',', str(sample_ks)]),
                         new_line=False)

    wk.write_to_file(out_dir + 'ISD_bootstrap_' + model + '_rsquare.txt', '\t')
    wk.write_to_file(out_dir + 'ISD_bootstrap_' + model + '_ks.txt', '\t')
    wk.write_to_file(out_dir + 'ISD_bootstrap_' + model + '_ks.txt',
                     ",".join(str(x) for x in out_list_ks))
def get_mete_pred_isd_approx(S, N, E):
    """Obtain the dbh2 for N individuals predicted by METE, using the newly derived approximated ISD."""
    psi_appox = mete_distributions.psi_epsilon_approx(S, N, E)
    scaled_rank = [(x + 0.5) / N for x in range(N)]
    pred = np.array([psi_appox.ppf(q) for q in scaled_rank])
    return np.array(pred)
def get_mete_pred_isd_approx(S, N, E):
    """Obtain the dbh2 for N individuals predicted by METE, using the newly derived approximated ISD."""
    psi_appox = mete_distributions.psi_epsilon_approx(S, N, E)
    scaled_rank = [(x + 0.5) / N for x in range(N)]
    pred = np.array([psi_appox.ppf(q) for q in scaled_rank])
    return np.array(pred)