Beispiel #1
0
def fetch(
        start=datetime(2020, 1, 1),
        end=datetime.now(),
        lat=33.5020,  # Closest to UAB
        lon=-86.8064):
    start += timedelta(hours=6)  # UTC offset
    end += timedelta(hours=6)
    end.replace(microsecond=0, second=0)
    stations = Stations(lat=lat, lon=lon)
    station = stations.fetch(1)
    data = Hourly(station, start, end)
    data = data.normalize()
    data = data.interpolate()
    df = data.fetch()
    out = {}
    last_row = None
    for row in df.itertuples():
        if last_row:
            out.update(interpolate_minutes(last_row, row))
        last_row = row
    current_time = last_row.time - timedelta(hours=6)
    while current_time <= end - timedelta(hours=6):
        out[create_datetime_ID(current_time)] = {
            "time": current_time,
            "temp": last_row.temp
        }
        current_time += timedelta(minutes=1)
    return out
Beispiel #2
0
    def test_coverage(self):

        # Get data for some day at Frankfurt Airport
        data = Hourly(['10637'], start = datetime(2018, 1, 1), end = datetime(2018, 1, 1, 23, 59))
        coverage = data.normalize().coverage()

        # Check if coverage is 100%
        self.assertEqual(
            coverage,
            1,
            'Normalized hourly data returns coverage of ' + str(coverage) + ', should be 1'
        )
Beispiel #3
0
    def test_aggregate(self):

        # Get data for some days at Frankfurt Airport
        data = Hourly(['10637'], start = datetime(2018, 1, 1), end = datetime(2018, 1, 3, 23, 59))
        count = data.normalize().aggregate(freq = '1D').count()

        # Check if count matches 3
        self.assertEqual(
            count,
            3,
            'Aggregated hourly data returns count of ' + str(count) + ', should be 3'
        )
Beispiel #4
0
    def test_normalize(self):

        # Get data for some day at Frankfurt Airport
        data = Hourly(['10637'], start = datetime(2018, 1, 1), end = datetime(2018, 1, 1, 23, 59))
        count = data.normalize().count()

        # Check if count matches 24
        self.assertEqual(
            count,
            24,
            'Normalized hourly data returns count of ' + str(count) + ', should be 24'
        )
Beispiel #5
0
"""
Example: Interpolation

Meteorological data provided by Meteostat (https://dev.meteostat.net)
under the terms of the Creative Commons Attribution-NonCommercial
4.0 International Public License.

The code is licensed under the MIT license.
"""

from datetime import datetime
import matplotlib.pyplot as plt
from meteostat import Hourly

# Time period
start = datetime(2018, 8, 1)
end = datetime(2018, 8, 4, 23, 59)

# Get hourly data
data = Hourly('10730', start, end)
data = data.normalize()
data = data.interpolate(6)
data = data.fetch()

# Plot chart
data.plot(y='temp')
plt.show()
Beispiel #6
0
def point_hourly():
    """
    Return hourly point data in JSON format
    """

    # Get query parameters
    args = utils.get_parameters(parameters)

    # Check if required parameters are set
    if args['lat'] and args['lon'] and len(args['start']) == 10 and len(
            args['end']) == 10:

        try:

            # Convert start & end date strings to datetime
            start = datetime.strptime(args['start'], '%Y-%m-%d')
            end = datetime.strptime(f'{args["end"]} 23:59:59',
                                    '%Y-%m-%d %H:%M:%S')

            # Get number of days between start and end date
            date_diff = (end - start).days

            # Check date range
            if date_diff < 0 or date_diff > max_days:
                # Bad request
                abort(400)

            # Caching
            now_diff = (datetime.now() - end).days

            if now_diff < 3:
                cache_time = 60 * 60
            elif now_diff < 30:
                cache_time = 60 * 60 * 24
            else:
                cache_time = 60 * 60 * 24 * 3

            Hourly.max_age = cache_time

            # Create a point
            location = Point(args['lat'], args['lon'], args['alt'])

            # Get data
            data = Hourly(location,
                          start,
                          end,
                          timezone=args['tz'],
                          model=args['model'])

            # Check if any data
            if data.count() > 0:

                # Normalize data
                data = data.normalize()

                # Aggregate
                if args['freq']:
                    data = data.aggregate(args['freq'])

                # Unit conversion
                if args['units'] == 'imperial':
                    data = data.convert(units.imperial)
                elif args['units'] == 'scientific':
                    data = data.convert(units.scientific)

                # Fetch DataFrame
                data = data.fetch()

                # Convert to integer
                data['tsun'] = data['tsun'].astype('Int64')
                data['coco'] = data['coco'].astype('Int64')

                # DateTime Index to String
                data.index = data.index.strftime('%Y-%m-%d %H:%M:%S')
                data = data.reset_index().to_json(orient="records")

            else:

                # No data
                data = '[]'

            # Inject meta data
            meta = {}
            meta['generated'] = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
            meta['stations'] = location.stations.to_list()

            # Generate output string
            output = f'''{{"meta":{json.dumps(meta)},"data":{data}}}'''

            # Return
            return utils.send_response(output, cache_time)

        except BaseException:

            # Bad request
            abort(400)

    else:

        # Bad request
        abort(400)