Beispiel #1
0
def test_heat_index_kelvin():
    """Test heat_index when given Kelvin temperatures."""
    temp = 308.15 * units.degK
    rh = 0.7
    hi = heat_index(temp, rh)
    # NB rounded up test value here vs the above two tests
    assert_almost_equal(hi.to('degC'), 50.3406 * units.degC, 4)
Beispiel #2
0
def test_heat_index_undefined_flag():
    """Test whether masking values can be disabled for heat index."""
    temp = units.Quantity(np.ma.array([80, 88, 92, 79, 30, 81]), units.degF)
    rh = np.ma.array([40, 39, 2, 70, 50, 39]) * units.percent

    hi = heat_index(temp, rh, mask_undefined=False)
    mask = np.array([False] * 6)
    assert_array_equal(hi.mask, mask)
Beispiel #3
0
def test_heat_index_invalid():
    """Test heat index for values that should be masked."""
    temp = np.array([80, 88, 92, 79, 30, 81]) * units.degF
    rh = np.array([40, 39, 2, 70, 50, 39]) * units.percent

    hi = heat_index(temp, rh)
    mask = np.array([False, True, True, True, True, True])
    assert_array_equal(hi.mask, mask)
Beispiel #4
0
def test_heat_index_basic():
    """Test the basic heat index calculation."""
    temp = np.array([80, 88, 92, 110]) * units.degF
    rh = np.array([40, 100, 70, 40]) * units.percent

    hi = heat_index(temp, rh)
    values = np.array([80, 121, 112, 136]) * units.degF
    assert_array_almost_equal(hi, values, 0)
Beispiel #5
0
def mcalc_feelslike(tmpf, dwpf, smps):
    """Compute a feels like temperature

    Args:
      temperature (temperature): The dry bulb temperature
      dewpoint (temperature): The dew point temperature
      speed (speed): the wind speed

    Returns:
      temperature (temperature): The feels like temperature
    """
    rh = mcalc.relative_humidity_from_dewpoint(tmpf, dwpf)
    hidx = mcalc.heat_index(tmpf, rh, mask_undefined=True)
    wcht = mcalc.windchill(tmpf, smps, mask_undefined=True)
    # Where heat index is masked, replace with temperature
    hidx[hidx.mask] = tmpf[hidx.mask]
    # where ever wcht is not masked, replace with wind chill
    hidx[~ wcht.mask] = wcht[~ wcht.mask]
    return hidx
Beispiel #6
0
def test_heat_index_ratio():
    """Test giving humidity as number [0, 1] to heat index."""
    temp = units.Quantity([35., 20.], units.degC)
    rh = 0.7
    hi = heat_index(temp, rh)
    assert_almost_equal(hi.to('degC'), units.Quantity([50.3405, np.nan], units.degC), 4)
Beispiel #7
0
def test_heat_index_units():
    """Test units coming out of heat index."""
    temp = units.Quantity([35., 20.], units.degC)
    rh = 70 * units.percent
    hi = heat_index(temp, rh)
    assert_almost_equal(hi.to('degC'), units.Quantity([50.3405, np.nan], units.degC), 4)
Beispiel #8
0
def test_heat_index_scalar():
    """Test heat index using scalars."""
    hi = heat_index(96 * units.degF, 65 * units.percent)
    assert_almost_equal(hi, 121 * units.degF, 0)
def GFS_fn(in_file_path, out_file_path, slice_hr):
    os.mkdir(out_file_path)

    start_time = time.time()

    GFS_globe = xr.open_mfdataset(in_file_path + "*.grib",
                                  engine='cfgrib',
                                  compat='override',
                                  combine='by_coords')
    GFS_grib = GFS_globe.sel(longitude=slice(65, 100), latitude=slice(40, 5))

    ref_date = str(GFS_grib.time.values)  #'2020-02-26 00:00:00'
    GFS_grib.to_netcdf(in_file_path + 'GFS_INDIA_' + ref_date[:13] + '.nc')

    GFS = xr.open_dataset(in_file_path + 'GFS_INDIA_' + ref_date[:13] + '.nc')

    t_bins = GFS.step[::2]

    GFS.tp.groupby_bins('step', bins=t_bins, include_lowest=True,
                        right=False).groups
    tp = GFS.tp.groupby_bins('step',
                             bins=t_bins,
                             include_lowest=True,
                             right=False).sum(
                                 dim=('step'))  #GFS.tp[:,1440,0].values
    tmax = GFS.tmax.groupby_bins('step',
                                 bins=t_bins,
                                 include_lowest=True,
                                 right=False).max(dim=('step'))  #max
    r2 = GFS.r2.groupby_bins('step',
                             bins=t_bins,
                             include_lowest=True,
                             right=False).max(dim=('step'))  #max

    W_SPD = np.sqrt(GFS.u10**2 + GFS.v10**2)
    W_speed = W_SPD.groupby_bins('step',
                                 bins=t_bins,
                                 include_lowest=True,
                                 right=False).max(dim=('step'))
    W_speed_index = W_SPD.groupby_bins(
        'step', bins=t_bins, include_lowest=True,
        right=False).map(lambda x: np.argmax(x, axis=0))

    HI_tmax = mpcalc.heat_index(GFS.tmax.values * units.degK,
                                GFS.r2.values / 100 * units.dimensionless,
                                mask_undefined=False).to(units.degC)
    HI_t2 = mpcalc.heat_index(GFS.t2m.values * units.degK,
                              GFS.r2.values / 100 * units.dimensionless,
                              mask_undefined=False).to(units.degC)
    Heatindex_tmax_hr = GFS.tmax.copy() * 0 + HI_tmax.magnitude
    Heatindex_t2_hr = GFS.t2m.copy() * 0 + HI_t2.magnitude
    Heat_Index_tmax = Heatindex_tmax_hr.groupby_bins(
        'step', bins=t_bins, include_lowest=True,
        right=False).max(dim=('step'))  #max of Heat Index
    Heat_Index_t2 = Heatindex_t2_hr.groupby_bins(
        'step', bins=t_bins, include_lowest=True,
        right=False).max(dim=('step'))  #max of Heat Index

    print(time.time() - start_time)
    U10 = W_speed.values.copy() * 0
    V10 = U10.copy() * 0
    for tm in range(W_speed.shape[0]):
        print(tm)
        a = W_speed_index[tm, :, :].values + (tm * 2)
        m, n = a.shape
        I, J = np.ogrid[:m, :n]
        U10[tm, :, :] = GFS.u10.values[a, I, J]
        V10[tm, :, :] = GFS.v10.values[a, I, J]

    ds = xr.Dataset(
        {
            'Total_precipitation': (['time', 'lat', 'lon'], tp.values),
            'T_max': (['time', 'lat', 'lon'], tmax.values - 273.15),
            'Relative_Humidity_2m': (['time', 'lat', 'lon'], r2.values),
            'U10': (['time', 'lat', 'lon'], U10),
            'V10': (['time', 'lat', 'lon'], V10),
            'wind_speed': (['time', 'lat', 'lon'], W_speed.values),
            'Heat_Index_tmax':
            (['time', 'lat', 'lon'], Heat_Index_tmax.values),
            'Heat_Index_t2': (['time', 'lat', 'lon'], Heat_Index_t2.values)
        },
        coords={
            'lon': (['lon'], GFS.longitude.values),
            'lat': (['lat'], GFS.latitude.values),
            'time':
            pd.date_range(ref_date, periods=W_speed.shape[0] + 1,
                          freq='6H')[1:],
            'reference_time':
            pd.Timestamp(ref_date)
        })

    os.chdir(out_file_path)
    ds.Total_precipitation.to_netcdf("GFS_Total_precipitationto.nc")
    ds.T_max.to_netcdf("GFS_T_max.nc")
    ds.Relative_Humidity_2m.to_netcdf("GFS_Relative_Humidity_2m.nc")
    ds.U10.to_netcdf("GFS_U10.nc")
    ds.V10.to_netcdf("GFS_V10.nc")
    ds.wind_speed.to_netcdf("GFS_wind_speed.nc")
    ds.Heat_Index_tmax.to_netcdf("GFS_Heat_Index_tmax.nc")
    ds.Heat_Index_t2.to_netcdf("GFS_Heat_Index_t2.nc")

    lat_new = np.linspace(
        ds['lat'].values.min(),
        ds['lat'].values.max(),
        num=int((ds['lat'].values.max() - ds['lat'].values.min()) / 0.25) + 1,
        endpoint=True)
    lon_new = np.linspace(
        ds['lon'].values.min(),
        ds['lon'].values.max(),
        num=int((ds['lon'].values.max() - ds['lon'].values.min()) / 0.25) + 1,
        endpoint=True)

    ds_out = xr.Dataset({
        'lat': (['lat'], lat_new),
        'lon': (['lon'], lon_new),
    })

    regridder = xe.Regridder(ds, ds_out, 'bilinear', reuse_weights=True)
    regridder  # print basic regridder information.

    U10p25 = regridder(ds.U10)
    V10p25 = regridder(ds.V10)

    U10p25.to_netcdf("GFS0p25_U10m.nc")
    V10p25.to_netcdf("GFS0p25_V10m.nc")

    print(time.time() - start_time)

    data_dir_raw = Path("/home/vassar/Documents/forecast_vassarlabs/data")

    brk_rh = pd.read_csv(data_dir_raw / "brk_rh.csv")["x"]
    col_rh = pd.read_csv(data_dir_raw / "col_rh.csv")["x"]

    brk_tem = pd.read_csv(data_dir_raw / "brk_tem.csv")["x"]
    col_tem = pd.read_csv(data_dir_raw / "col_tem.csv")["x"]

    brk_ws = pd.read_csv(data_dir_raw / "brk_ws.csv")["x"]
    col_ws = pd.read_csv(data_dir_raw / "col_ws.csv")["x"]

    brk_rf = [0, .1, 2.5, 15.6, 64.5, 115.6, 204.5, 8000]
    col_rf = [
        "#FFFFFF", "#C3FDCA", "#01FF04", "#048500", "#FDC0CB", "#FC0300",
        "#610301"
    ]

    mask_table = pd.read_csv(
        "/home/vassar/Documents/Rahul/Block&&SubBasin/Block_UUID (1)/Block_uuid.csv"
    )
    mask_table = mask_table[[
        'OBJECTID_1', "State_Name", 'district', 'block', 'UUID'
    ]]
    mask_table.columns = ['Mask_id', "State_Name", 'district', 'block', 'UUID']

    mask = xr.open_dataset(
        '/home/vassar/Documents/Rahul/Block&&SubBasin/Block_UUID (1)/Block.nc')

    nc2table_max(ds.T_max, mask.Band1, mask_table, data_dir_raw,
                 "bilinear_281x281_3032x2923.nc")
    nc2table_max(ds.Relative_Humidity_2m, mask.Band1, mask_table, data_dir_raw,
                 "bilinear_281x281_3032x2923.nc")
    nc2table(ds.Total_precipitation, mask.Band1, mask_table, data_dir_raw,
             "bilinear_281x281_3032x2923.nc")
    nc2table_max(ds.wind_speed, mask.Band1, mask_table, data_dir_raw,
                 "bilinear_281x281_3032x2923.nc")
    nc2table_max(ds.Heat_Index_t2, mask.Band1, mask_table, data_dir_raw,
                 "bilinear_281x281_3032x2923.nc")

    Process(target=heatmap, args=(ds.T_max, col_tem, brk_tem)).start()
    Process(target=heatmap, args=(ds.Heat_Index_t2, col_tem, brk_tem)).start()
    Process(target=heatmap,
            args=(ds.Relative_Humidity_2m, col_rh, brk_rh)).start()
    Process(target=heatmap, args=(ds.wind_speed, col_ws, brk_ws)).start()
    Process(target=heatmap,
            args=(ds.Total_precipitation, col_rf, brk_rf)).start()