Beispiel #1
0
def test_log_interp_no_extrap():
    """Test interpolating with log x-scale setting out of bounds value error."""
    x_log = np.array([1e3, 1e4, 1e5, 1e6])
    y_log = np.log(x_log) * 2 + 3
    x_interp = np.array([1e7])
    with pytest.raises(ValueError):
        log_interp(x_interp, x_log, y_log, fill_value=None)
Beispiel #2
0
def test_log_interp_3d():
    """Test interpolating with log x-scale 3 dimensions along second axis."""
    x_log = np.ones((3, 4, 3)) * np.array([1e3, 1e4, 1e5, 1e6]).reshape(-1, 1)
    y_log = np.log(x_log) * 2 + 3
    x_interp = np.array([5e3, 5e4, 5e5])
    y_interp_truth = np.array([20.0343863828, 24.6395565688, 29.2447267548])
    y_interp = log_interp(x_interp, x_log, y_log, axis=1)
    assert_array_almost_equal(y_interp[0, :, 0], y_interp_truth, 7)
Beispiel #3
0
def test_log_interp_4d():
    """Test interpolating with log x-scale 4 dimensions."""
    x_log = np.ones((2, 2, 3, 4)) * np.array([1e3, 1e4, 1e5, 1e6])
    y_log = np.log(x_log) * 2 + 3
    x_interp = np.array([5e3, 5e4, 5e5])
    y_interp_truth = np.array([20.0343863828, 24.6395565688, 29.2447267548])
    y_interp = log_interp(x_interp, x_log, y_log, axis=3)
    assert_array_almost_equal(y_interp[0, 0, 0, :], y_interp_truth, 7)
Beispiel #4
0
def test_log_interp_units():
    """Test interpolating with log x-scale with units."""
    x_log = np.array([1e3, 1e4, 1e5, 1e6]) * units.hPa
    y_log = (np.log(x_log.m) * 2 + 3) * units.degC
    x_interp = np.array([5e5, 5e6, 5e7]) * units.Pa
    y_interp_truth = np.array([20.0343863828, 24.6395565688, 29.2447267548]) * units.degC
    y_interp = log_interp(x_interp, x_log, y_log)
    assert_array_almost_equal(y_interp, y_interp_truth, 7)
Beispiel #5
0
def test_log_interp_2d():
    """Test interpolating with log x-scale in 2 dimensions."""
    x_log = np.array([[1e3, 1e4, 1e5, 1e6], [1e3, 1e4, 1e5, 1e6]])
    y_log = np.log(x_log) * 2 + 3
    x_interp = np.array([5e3, 5e4, 5e5])
    y_interp_truth = np.array([20.0343863828, 24.6395565688, 29.2447267548])
    y_interp = log_interp(x_interp, x_log, y_log, axis=1)
    assert_array_almost_equal(y_interp[1], y_interp_truth, 7)
Beispiel #6
0
def test_log_interp():
    """Test deprecated log_interp function."""
    x_log = np.array([1e3, 1e4, 1e5, 1e6])
    y_log = np.log(x_log) * 2 + 3
    x_interp = np.array([5e3, 5e4, 5e5])
    y_interp_truth = np.array([20.0343863828, 24.6395565688, 29.2447267548])
    y_interp = log_interp(x_interp, x_log, y_log)
    assert_array_almost_equal(y_interp, y_interp_truth, 7)
Beispiel #7
0
def test_log_interp_set_nan_below():
    """Test interpolating with log x-scale setting out of bounds below data to nan."""
    x_log = np.array([1e3, 1e4, 1e5, 1e6])
    y_log = np.log(x_log) * 2 + 3
    x_interp = 1e2
    y_interp_truth = np.nan
    with pytest.warns(Warning):
        y_interp = log_interp(x_interp, x_log, y_log)
    assert_array_almost_equal(y_interp, y_interp_truth, 7)
Beispiel #8
0
def test_log_interp():
    """Test deprecated log_interp function."""
    x_log = np.array([1e3, 1e4, 1e5, 1e6])
    y_log = np.log(x_log) * 2 + 3
    x_interp = np.array([5e3, 5e4, 5e5])
    y_interp_truth = np.array([20.0343863828, 24.6395565688, 29.2447267548])
    with pytest.warns(MetpyDeprecationWarning):
        y_interp = log_interp(x_interp, x_log, y_log)
    assert_array_almost_equal(y_interp, y_interp_truth, 7)
Beispiel #9
0
def test_log_interp_2args():
    """Test interpolating with log x-scale with 2 arguments."""
    x_log = np.array([1e3, 1e4, 1e5, 1e6])
    y_log = np.log(x_log) * 2 + 3
    y_log2 = np.log(x_log) * 2 + 3
    x_interp = np.array([5e3, 5e4, 5e5])
    y_interp_truth = np.array([20.0343863828, 24.6395565688, 29.2447267548])
    y_interp = log_interp(x_interp, x_log, y_log, y_log2)
    assert_array_almost_equal(y_interp[1], y_interp_truth, 7)
    assert_array_almost_equal(y_interp[0], y_interp_truth, 7)
Beispiel #10
0
def get_isobaric_variables(data, var_list, plevs, outfile, dtype, compression,
                           complevel):
    """Gets isobaric variables from a list"""
    # use wrf-python to get data for each of the variables
    var_def = get_variables()
    # get pressure array and attach units
    p = getvar(data, 'p', ALL_TIMES)
    p_np = np.array(p.data) * units(p.units)

    for i in range(len(var_list)):
        name = var_list[i]
        var_data = getvar(data, var_def[name][2], ALL_TIMES)
        iso_data = log_interp(plevs, p_np, var_data.data, axis=1)

        # write each of the variables to the output file

        pres_data = outfile.createVariable(
            var_list[i],
            dtype, ('time', 'pressure_levels', 'lat', 'lon'),
            zlib=compression,
            complevel=complevel)
        pres_data.units = var_data.units
        if var_list[i] == 'height':
            pres_data.decription = 'height [MSL] of isobaric surfaces'
        elif var_list[i] == 'uwnd':
            pres_data.description = 'u-wind component on isobaric surfaces'
        elif var_list[i] == 'vwnd':
            pres_data.description = 'v-wind component on isobaric surfaces'
        elif var_list[i] == 'wwnd':
            pres_data.description = 'w-wind component on isobaric surfaces'
        elif var_list[i] == 'temp':
            pres_data.description = 'temperature on isobaric surfaces'
        elif var_list[i] == 'dewpt':
            pres_data.description = 'dewpoint temperature on isobaric surfaces'
        elif var_list[i] == 'avor':
            pres_data.description = 'absolute vorticity on isobaric surfaces'
        else:
            pres_data.description = var_data.description
        pres_data[:] = iso_data
hgt = data.variables['height'][:] * units(data.variables['height'].units)

####################################
# Array of desired pressure levels
plevs = [700.] * units.hPa

#####################################
# **Interpolate The Data**
#
# Now that the data is ready, we can interpolate to the new isobaric levels. The data is
# interpolated from the irregular pressure values for each sigma level to the new input
# mandatory isobaric levels. `mcalc.log_interp` will interpolate over a specified dimension
# with the `axis` argument. In this case, `axis=1` will correspond to interpolation on the
# vertical axis.

isobaric_levels = mcalc.log_interp(plevs, pres, hgt, temperature, axis=1)

####################################
# The interpolated data is output in a list, so we will pull out each variable for plotting.

height = isobaric_levels[0]
temp = isobaric_levels[1]

####################################
# **Plotting the Data for 700 hPa.**

# Set up our projection
crs = ccrs.LambertConformal(central_longitude=-100.0, central_latitude=45.0)

# Set up our array of latitude and longitude values and transform to
# the desired projection.
Beispiel #12
0
####################################
# Array of desired pressure levels
plevs = [700.] * units.hPa

#####################################
# **Interpolate The Data**
#
# Now that the data is ready, we can interpolate to the new isobaric levels. The data is
# interpolated from the irregular pressure values for each sigma level to the new input
# mandatory isobaric levels. `mpcalc.log_interp` will interpolate over a specified dimension
# with the `axis` argument. In this case, `axis=1` will correspond to interpolation on the
# vertical axis. The interpolated data is output in a list, so we will pull out each
# variable for plotting.

height, temp = mpcalc.log_interp(plevs, pres, hgt, temperature, axis=1)

####################################
# **Plotting the Data for 700 hPa.**

# Set up our projection
crs = ccrs.LambertConformal(central_longitude=-100.0, central_latitude=45.0)

# Set up our array of latitude and longitude values and transform to
# the desired projection.
tlatlons = crs.transform_points(ccrs.PlateCarree(), lon, lat)
tlons = tlatlons[:, :, 0]
tlats = tlatlons[:, :, 1]

# Set the forecast hour
FH = 1