Beispiel #1
0
def test_model(train_i, model_path, chose, isvalidate, istrain=False):
    '''
    root = '/home/wangke/ultrasound_data163/'
    img_labs = ['process_pic_163/', 'process_lab_163/']
    model_path = 'D205_Res34_unet_res1_0.pkl'
    chose = 'D205'
    '''
    batchsize = 1
    i = train_i
    if chose == 'D205':
        root = '/home/wangke/ultrasound_data163/'
        img_labs = ['process_pic_163/', 'process_lab_163/']
        # txt_test = 'D163N5fold'+str(train_i+1)+'_test.csv'
        txt_test = 'all_data.csv'
        # net_path = 'models/saved/D205/'+model_path
        excel_path = "models/pre_out/D205/" + model_path[:-4] + ".xlsx"
        save_picpath = 'models/pre_out/D205/pre_pic/'
    if chose == 'D23':
        root = '/home/wangke/ultrasound_data2/'
        img_labs = ['fuse_data_pic/', 'fuse_data_lab/']
        txt_test = 'FuseDatafold' + str(
            train_i + 1) + '_test.csv' if isvalidate else 'fuse_data.csv'
        if istrain: txt_test = 'FuseDatafold' + str(train_i + 1) + '_train.csv'
        excel_path = "models/pre_out/D2/" + model_path[:
                                                       -4] + "vali.xlsx" if istrain else "models/pre_out/D2/" + model_path[:
                                                                                                                           -4] + "train.xlsx"
        save_picpath = 'models/pre_out/D2/pre_pic/'

    if chose == 'D4':
        root = '/home/wangke/ultrasound_data4/'
        img_labs = ['data_pic/', 'data_lab/']
        # img_labs = ['process_pic/', 'process_lab/']
        # txt_test = 'N5fold'+str(train_i+1)+'_test.csv'
        txt_test = 'all_data2.csv'
        # net_path = 'models/saved/D3/'+model_path
        excel_path = "models/pre_out/D4/" + model_path[:-4] + "test.xlsx"
        save_picpath = 'models/pre_out/D4/pre_pic/'

    net_path = 'models/saved/' + model_path.split(
        '_')[0][:2] + '/' + model_path
    # net_path = 'models/saved/D2/'+model_path
    net = torch.load(net_path)
    net.eval()
    # txt_test = 'D163N5fold'+str(train_i+1)+'_test.csv'
    file_list = pd.read_csv(root + txt_test, sep=',',
                            usecols=[1]).values.tolist()
    file_list = [i[0] for i in file_list]
    trans_tensor = transforms.ToTensor()
    dice_all = []
    miou_all = []
    sen_all = []
    ppv_all = []
    spe_all = []
    f1s_all = []
    acc_all = []
    outputs = []
    for file_i in file_list:
        img = cv2.imread(root + img_labs[0] + file_i, cv2.IMREAD_GRAYSCALE)
        # img3 = cv2.equalizeHist(img).astype('float32')
        img = img.astype('float32')
        img /= 255.
        img2 = np.exp(-((img - 0.5) * (img - 0.5)) /
                      (2 * np.std(img) * np.std(img)))
        # img = (img-0.26)/0.14
        img = np.array([img, img2])
        img = img.transpose(1, 2, 0)
        img_tensor = trans_tensor(img)
        img_tensor = img_tensor.unsqueeze(0)
        img_tensor = V(img_tensor.cuda())
        lab = cv2.imread(root + img_labs[1] + file_i, cv2.IMREAD_GRAYSCALE)
        lab = lab.astype('float32')
        lab /= 255.
        lab_tensor = trans_tensor(lab)
        lab_tensor = lab_tensor.unsqueeze(0)
        # lab_tensor = V(lab_tensor.cuda())

        with torch.no_grad():
            out_final2, out_res, out_final = net(img_tensor)
        out = out_final.cpu().numpy()
        oredr = file_i[:-4] + model_path.split('_')[-1][:-4]
        # print(out.shape)
        out[out > 0.5] = 1
        out[out <= 0.5] = 0
        plt.imsave(save_picpath + oredr + '.png', out[0, 0, :, :], cmap='gray')

        # 计算结果
        # loss = bce_loss(pre_map, F.interpolate(lab_tensor, size=[128, 128], mode='nearest')) + dice_loss(lab_tensor, pre_map)
        out_final[out_final > 0.5] = 1
        out_final[out_final <= 0.5] = 0
        dice_score = float(dice_coeff(lab_tensor, out_final.cpu(), False))
        sen_score = float(sensitive(lab_tensor, out_final.cpu()))
        ppv_score = float(precision(lab_tensor, out_final.cpu()))
        acc_score = float(accuracy(lab_tensor, out_final.cpu()))
        spe_score = float(specificity(lab_tensor, out_final.cpu()))
        miou_score = float(m_iou(lab_tensor, out_final.cpu(), False))
        ff1_score = float(f1_score(lab_tensor, out_final.cpu()))
        # print(float(dice_score))
        # print((file_i, dice_score, miou_score, sen_score, ppv_score, acc_score, ff1_score, spe_score, 'fold_'+str(i+1)), ', /')
        outputs.append((file_i, dice_score, miou_score, sen_score, ppv_score,
                        acc_score, ff1_score, spe_score, 'fold_' + str(i + 1)))

        dice_all.append(dice_score)
        miou_all.append(miou_score)
        sen_all.append(sen_score)
        ppv_all.append(ppv_score)
        acc_all.append(acc_score)
        f1s_all.append(ff1_score)
        spe_all.append(spe_score)

    dice_aver = sum(dice_all) / len(dice_all)
    miou_aver = sum(miou_all) / len(miou_all)
    sen_aver = sum(sen_all) / len(sen_all)
    ppv_aver = sum(ppv_all) / len(ppv_all)
    acc_aver = sum(acc_all) / len(acc_all)
    f1_aver = sum(f1s_all) / len(f1s_all)
    spe_aver = sum(spe_all) / len(spe_all)

    print('dice_score', dice_aver, 'miou_score', miou_aver, 'sen_aver',
          sen_aver, 'ppv_aver', ppv_aver, 'acc_aver', acc_aver, 'f1_aver',
          f1_aver, 'spe_aver', spe_aver)

    df = pd.DataFrame(outputs,
                      columns=[
                          'order', 'dice', 'miou', 'sen', 'ppv', 'acc', 'f1',
                          'spe', 'fold'
                      ])

    df.to_excel(excel_path, index=False)
Beispiel #2
0
def train(train_i=0):
	NAME = 'D2F5_fold'+str(train_i+1)+'_FPN.th'  
	print(NAME)

	batchsize = 4

	txt_train = 'N5fold'+str(train_i+1)+'_train.csv'
	txt_test = 'N5fold'+str(train_i+1)+'_test.csv'
	dataset_train = MyDataset(root='/home/wangke/ultrasound_data2/', txt_path=txt_train, transform=transforms.ToTensor(), target_transform=transforms.ToTensor())
	dataset_test = MyDataset(root='/home/wangke/ultrasound_data2/', txt_path=txt_test, transform=transforms.ToTensor(), target_transform=transforms.ToTensor())
	train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=batchsize, shuffle=True, num_workers=2)
	test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=batchsize, shuffle=False, num_workers=2, drop_last=True)

	mylog = open('logs/'+NAME+'.log', 'w')


	# model = FPN_Net(1, 1)
	# summary(model)

	slover = MyFrame(FPN_Net, dice_bce_loss, 2e-4)

	total_epoch = 100
	no_optim = 0
	train_epoch_best_loss = 10000
	best_test_score = 0
	for epoch in range(1, total_epoch+1):
		data_loader_iter = iter(train_loader)
		data_loader_test = iter(test_loader)
		train_epoch_loss = 0
		index = 0

		tic = time()

		train_score = 0
		for img, mask in data_loader_iter:
			slover.set_input(img, mask)
			train_loss, pred = slover.optimize()
			train_score += dice_coeff(mask, pred.cpu().data, False)
			train_epoch_loss +=train_loss 
			index +=1

		test_sen = 0
		test_ppv = 0
		test_score = 0
		test_acc = 0
		test_spe = 0
		test_f1s = 0
		for img, mask in data_loader_test:
			slover.set_input(img, mask)
			pre_mask, _ = slover.test_batch()
			test_score += dice_coeff(mask, pre_mask, False)
			test_sen += sensitive(mask, pre_mask)
			test_ppv += precision(mask, pre_mask)
			test_acc += accuracy(mask, pre_mask)
			test_spe += specificity(mask, pre_mask)
			test_f1s += f1_score(mask, pre_mask)

		test_sen /= len(data_loader_test)
		test_ppv /= len(data_loader_test)
		test_score /= len(data_loader_test)
		test_acc /= len(data_loader_test)
		test_spe /= len(data_loader_test)
		test_f1s /= len(data_loader_test)

		if test_score>best_test_score:
			print('1. the dice score up to ', test_score, 'from ', best_test_score, 'saving the model', file=mylog, flush=True)
			print('1. the dice score up to ', test_score, 'from ', best_test_score, 'saving the model')
			best_test_score = test_score
			slover.save('./weights/'+NAME+'.th')

		train_epoch_loss = train_epoch_loss/len(data_loader_iter)
		train_score = train_score/len(data_loader_iter)
		print('epoch:', epoch, '    time:', int(time() - tic), 'train_loss:', train_epoch_loss.cpu().data.numpy(), 'train_score:', train_score, file=mylog, flush=True)
		print('test_dice_loss: ', test_score, 'test_sen: ', test_sen.numpy(), 'test_ppv: ', test_ppv.numpy(), 'test_acc: ', test_acc.numpy(), 'test_spe: ', test_spe.numpy(), 'test_f1s: ', test_f1s.numpy(), 'best_score is ', best_test_score, file=mylog, flush=True)
		
		print('********')
		print('epoch:', epoch, '    time:', int(time() - tic), 'train_loss:', train_epoch_loss.cpu().data.numpy(), 'train_score:', train_score)
		print('test_dice_loss: ', test_score, 'test_sen: ', test_sen.numpy(), 'test_ppv: ', test_ppv.numpy(), 'test_acc: ', test_acc.numpy(), 'test_spe: ', test_spe.numpy(), 'test_f1s: ', test_f1s.numpy(), 'best_score is ', best_test_score)

		if train_epoch_loss >= train_epoch_best_loss:
			no_optim +=1
		else:
			no_optim =0
			train_epoch_best_loss = train_epoch_loss

	print('Finish!', file=mylog, flush=True)
	print('Finish!')
	mylog.close()
Beispiel #3
0
def train_model(train_i, data_i, threshold, order, test_data1, test_data2):
    # data_i for training and validation, test_data for testing, 测试的话此数据集就全部用作测试,用all_data
    batchsize = 16
    i = train_i
    # net = _Res34_unet().cuda()
    net = _Reback_v2().cuda()
    # net = _nonlocal_unet().cuda()
    netname = "res"

    if data_i == -1:
        epoch_num = 100
        txt_train = 'FuseDatafold' + str(train_i + 1) + '_train.csv'
        NAME = 'D2/D23_Res34_unet_' + netname + str(i + 1) + '_' + str(order)
        # NAME = 'D2/D23_Res34_unet_'+netname+str(i+1)+'_'+str(order)+'1'
        NAME2 = 'D2/inter_pic/'
        print(NAME)
        dataset_train = MyDataset(
            root='/home/wangke/ultrasound_data2/',
            txt_path=txt_train,
            lab_pics=['fuse_data_pic/', 'fuse_data_lab/', 'inter_pic/'],
            istrain=True,
            transform=transforms.ToTensor(),
            target_transform=transforms.ToTensor(),
            pre_num=0)
        txt_validate = 'FuseDatafold' + str(train_i + 1) + '_test.csv'
        dataset_validate = MyDataset(
            root='/home/wangke/ultrasound_data2/',
            txt_path=txt_validate,
            lab_pics=['fuse_data_pic/', 'fuse_data_lab/', 'inter_pic/'],
            transform=transforms.ToTensor(),
            target_transform=transforms.ToTensor(),
            pre_num=0)

    if test_data1 == 205:
        txt_test = 'all_data.csv'
        dataset_test1 = MyDataset(
            root='/home/wangke/ultrasound_data163/',
            txt_path=txt_test,
            lab_pics=['process_pic_163/', 'process_lab_163/'],
            transform=transforms.ToTensor(),
            target_transform=transforms.ToTensor(),
            pre_num=0)
    if test_data2 == 205:
        txt_test = 'all_data.csv'
        dataset_test2 = MyDataset(
            root='/home/wangke/ultrasound_data163/',
            txt_path=txt_test,
            lab_pics=['process_pic_163/', 'process_lab_163/'],
            transform=transforms.ToTensor(),
            target_transform=transforms.ToTensor(),
            pre_num=0)

    if test_data1 == 4:
        txt_test = 'all_data2.csv'
        dataset_test1 = MyDataset(root='/home/wangke/ultrasound_data4/',
                                  txt_path=txt_test,
                                  lab_pics=['data_pic/', 'data_lab/'],
                                  transform=transforms.ToTensor(),
                                  target_transform=transforms.ToTensor(),
                                  pre_num=0)
    if test_data2 == 4:
        txt_test = 'all_data2.csv'
        dataset_test2 = MyDataset(root='/home/wangke/ultrasound_data4/',
                                  txt_path=txt_test,
                                  lab_pics=['data_pic/', 'data_lab/'],
                                  transform=transforms.ToTensor(),
                                  target_transform=transforms.ToTensor(),
                                  pre_num=0)

    train_loader = torch.utils.data.DataLoader(dataset_train,
                                               batch_size=batchsize,
                                               shuffle=True,
                                               num_workers=4,
                                               pin_memory=True)
    validate_loader = torch.utils.data.DataLoader(dataset_validate,
                                                  batch_size=batchsize,
                                                  shuffle=False,
                                                  num_workers=4,
                                                  pin_memory=True)
    test1_loader = torch.utils.data.DataLoader(dataset_test1,
                                               batch_size=batchsize,
                                               shuffle=False,
                                               num_workers=4,
                                               pin_memory=True)
    test2_loader = torch.utils.data.DataLoader(dataset_test2,
                                               batch_size=batchsize,
                                               shuffle=False,
                                               num_workers=4,
                                               pin_memory=True)

    num_no = 0
    max_numno = 5
    mylog = open('models/saved/' + NAME + '.log', 'w')
    total_epoch = epoch_num
    optimizer = torch.optim.Adam(params=net.parameters(),
                                 lr=1e-4,
                                 amsgrad=True,
                                 eps=1e-8)
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.95)
    best_validate_score = 0
    best_validate_loss = 999
    # loss_loss = LovaszHingeLoss()
    # loss_loss = dice_bce_loss2(batch=False)
    loss_loss = iou_loss2(batch=False)
    bce_loss = nn.BCELoss(size_average=True)
    save_mid = 0
    # ssim_loss = SSIM(window_size=11, size_average=True)

    train_loss = []
    test_loss2 = []
    test2_loss2 = []
    validate_loss2 = []
    train_dice = []
    test_dice = []
    test2_dice = []
    validate_dice = []
    train_miou = []
    test_miou = []
    test2_miou = []
    validate_miou = []
    train_sc = 0
    for epoch in range(1, total_epoch + 1):
        total_loss = 0
        loss_final_all = 0
        data_loader_iter = iter(train_loader)
        data_loader_validate = iter(validate_loader)
        data_loader_test = iter(test1_loader)
        data_loader_test2 = iter(test2_loader)
        tic = time()
        train_score = 0
        train_miou_b = 0

        isneedres = False

        net.train()
        for img, mask, id_img in data_loader_iter:
            # print(id_img)
            img = V(img.cuda(), requires_grad=False)
            mask_v = V(mask.cuda(), requires_grad=False)
            # res_v = V(res.cuda(), requires_grad=False)

            optimizer.zero_grad()
            # out_final, out_res = net(img, isneedres)
            # out_final, out_res = net(img)
            out_final2, out_res, out_final = net(img)
            # loss_all = dice_loss(mask_v, out_final)
            loss_all = loss_loss(mask_v, out_final)
            loss_step = loss_all
            loss_step += loss_loss(mask_v, out_final2)
            # print(train_sc-threshold)
            #
            # if train_sc>threshold:
            res_lab = torch.abs(torch.add(mask_v, torch.neg(out_final)))
            res_lab = res_lab.detach()
            # if save_mid==1:
            #     for i, id_i in enumerate(id_img):
            #         cv2.imwrite('models/saved/'+NAME2+id_i, res_lab[i,0,:,:].cpu().data.numpy()*255)
            #         # plt.imsave('models/saved/'+NAME2+id_i+'.png', res_lab[i,0,:,:].cpu().data.numpy(), cmap='gray')
            loss_res = bce_loss(
                F.interpolate(out_res, size=(256, 256), mode='bilinear'),
                res_lab)
            # if loss_res<0.01:isneedres=True
            loss_step += loss_res

            # loss_all, loss_final = compute_loss(out_loss, out_final, mask_v)
            loss_step.backward()
            optimizer.step()
            total_loss += loss_all
            # loss_final_all += loss_final
            train_score += dice_coeff(mask, out_final.cpu().data, False)
            train_miou_b += m_iou(mask, out_final.cpu().data, False)

        total_loss = total_loss.cpu().data.numpy() / len(data_loader_iter)
        train_score = train_score / len(data_loader_iter)
        train_miou_b = train_miou_b / len(data_loader_iter)

        test_score = 0
        test_loss = 0
        test_miou_b = 0
        test2_score = 0
        test2_loss = 0
        test2_miou_b = 0
        test_final_loss = 0
        validate_score = 0
        validate_loss = 0
        validate_miou_b = 0

        net.eval()
        with torch.no_grad():
            for img, mask, id_img in data_loader_test:
                img = V(img.cuda(), requires_grad=False)
                mask_v = V(mask.cuda(), requires_grad=False)
                # out_final, out_res = net(img, isneedres)
                # out_final, out_res = net(img)
                out_final2, out_res, out_final = net(img)
                loss_all = loss_loss(mask_v, out_final)
                # loss_all += loss_loss(mask_v, out_1)
                test_loss += loss_all
                test_score += dice_coeff(mask, out_final.cpu().data, False)
                test_miou_b += m_iou(mask, out_final.cpu().data, False)

            for img, mask, id_img in data_loader_test2:
                img = V(img.cuda(), requires_grad=False)
                mask_v = V(mask.cuda(), requires_grad=False)
                # out_final, out_res = net(img, isneedres)
                # out_final, out_res = net(img)
                out_final2, out_res, out_final = net(img)
                # loss_all += loss_loss(mask_v, out_1)
                loss_all = loss_loss(mask_v, out_final)
                test2_loss += loss_all
                test2_score += dice_coeff(mask, out_final.cpu().data, False)
                test2_miou_b += m_iou(mask, out_final.cpu().data, False)

            for img, mask, id_img in data_loader_validate:
                img = V(img.cuda(), requires_grad=False)
                mask_v = V(mask.cuda(), requires_grad=False)
                # res_v = V(res.cuda(), requires_grad=False)
                # out_final, out_res = net(img, isneedres)
                # out_final, out_res = net(img)
                out_final2, out_res, out_final = net(img)
                loss_all = loss_loss(mask_v, out_final)
                # if train_sc>threshold:
                #     # if save_mid==1:
                #     #     for i, id_i in enumerate(id_img):
                #     #         # plt.imsave('models/saved/'+NAME2+id_i+'.png', res_lab[i,0,:,:].cpu().data.numpy(), cmap='gray')
                #     #         cv2.imwrite('models/saved/'+NAME2+id_i, res_lab[i,0,:,:].cpu().data.numpy()*255)
                # res_lab = torch.abs(torch.add(mask_v, torch.neg(out_final)))
                # loss_res = bce_loss(out_res, res_lab)
                # loss_all += loss_res
                validate_loss += loss_all
                validate_score += dice_coeff(mask, out_final.cpu().data, False)
                validate_miou_b += m_iou(mask, out_final.cpu().data, False)

        validate_score = validate_score / len(data_loader_validate)
        validate_loss = validate_loss.cpu().data.numpy() / len(
            data_loader_validate)
        validate_miou_b = validate_miou_b / len(data_loader_validate)
        test_score = test_score / len(data_loader_test)
        test_loss = test_loss.cpu().data.numpy() / len(data_loader_test)
        test_miou_b = test_miou_b / len(data_loader_test)
        test2_score = test2_score / len(data_loader_test2)
        test2_loss = test2_loss.cpu().data.numpy() / len(data_loader_test2)
        test2_miou_b = test2_miou_b / len(data_loader_test2)

        train_sc = validate_score
        if train_sc > threshold:
            # if save_mid==2: save_mid=-1
            save_mid += 1
        # print(train_sc, save_mid)

        train_loss.append(total_loss)
        test_loss2.append(test_loss)
        test2_loss2.append(test2_loss)
        validate_loss2.append(validate_loss)

        train_dice.append(train_score)
        test_dice.append(test_score)
        test2_dice.append(test2_score)
        validate_dice.append(validate_score)

        train_miou.append(train_miou_b)
        test_miou.append(test_miou_b)
        test2_miou.append(test2_miou_b)
        validate_miou.append(validate_miou_b)

        scheduler.step()

        # if validate_score>best_test_score:
        #     best_validate_score = validate_score
        #     torch.save(net, 'models/saved/'+NAME+'.pkl')
        #     print('saved, ', best_validate_score, file=mylog, flush=True)
        #     print('saved, ', best_validate_score)
        if validate_loss < best_validate_loss:
            best_validate_loss = validate_loss
            torch.save(net, 'models/saved/' + NAME + '.pkl')
            print('saved, ', best_validate_loss, file=mylog, flush=True)
            print('saved, ', best_validate_loss)
            num_no = 0
        else:
            num_no += 1

        if num_no >= max_numno:
            num_no = 0
            net = torch.load('models/saved/' + NAME + '.pkl')
            print('loaded, ', best_validate_loss, file=mylog, flush=True)
            print('loaded, ', best_validate_loss)

        print('********', file=mylog, flush=True)
        print('epoch:',
              epoch,
              '    time:',
              int(time() - tic),
              'train_loss:',
              total_loss,
              'train_score:',
              train_score,
              'train_miou:',
              train_miou_b,
              'validate_loss:',
              validate_loss,
              'validate_score:',
              validate_score,
              'validate_miou:',
              validate_miou_b,
              'test1_loss:',
              test_loss,
              'test1_score:',
              test_score,
              'test1_miou:',
              test_miou_b,
              'test2_loss:',
              test2_loss,
              'test2_score:',
              test2_score,
              'test2_miou:',
              test2_miou_b,
              file=mylog,
              flush=True)
        print('********')
        print('epoch:', epoch, '    time:', int(time() - tic), 'train_loss:',
              total_loss, 'train_score:', train_score, 'train_miou:',
              train_miou_b, 'validate_loss:', validate_loss, 'validate_score:',
              validate_score, 'validate_miou:', validate_miou_b, 'test1_loss:',
              test_loss, 'test1_score:', test_score, 'test1_miou:',
              test_miou_b, 'test2_loss:', test2_loss, 'test2_score:',
              test2_score, 'test2_miou:', test2_miou_b)

    # plot
    # loss
    plt.figure()
    epochs = range(total_epoch)
    plt.plot(epochs, train_loss, 'b', label='train_loss')
    plt.plot(epochs, validate_loss2, 'c', label='validate_loss')
    plt.plot(epochs, test_loss2, 'r', label='test1_loss')
    plt.plot(epochs, test2_loss2, 'g', label='test2_loss')
    plt.xlabel('epoch')
    plt.ylabel('loss')
    plt.legend(loc="upper right")
    plt.savefig('models/saved/' + NAME + '_loss.png')

    plt.figure()
    plt.plot(epochs, train_dice, 'b', label='train_dice')
    plt.plot(epochs, validate_dice, 'c', label='validate_dice')
    plt.plot(epochs, test_dice, 'r', label='test1_dice')
    plt.plot(epochs, test2_dice, 'g', label='test2_dice')
    plt.xlabel('epoch')
    plt.ylabel('dice')
    plt.legend(loc="lower right")
    plt.savefig('models/saved/' + NAME + '_dice.png')
Beispiel #4
0
def fpn_Net_Train(train_i=0):
    NAME = 'fold'+str(train_i+1)+'3fpn-Net'
    model = FPN_Net(1, 1).cuda()
    model = torch.nn.DataParallel(model, device_ids=range(torch.cuda.device_count()))
    # model = FPN_Net(1, 1)
    # print(model)
    folds = data2()
    batch_size = 4
    (x_train, y_train), (x_test, y_test) = load_numpy(folds, train_i)
    dataset = torch.utils.data.TensorDataset(x_train, y_train)
    data_loader = torch.utils.data.DataLoader(
        dataset,
        batch_size=batch_size,
        shuffle=True,
        num_workers=4)
    mylog = open('logs/' + NAME + '.log', 'w')
    tic = time()
    no_optim = 0
    lr = 2e-4
    total_epoch=300
    train_epoch_best_loss=10000
    best_test_score = 0
    decay_factor = 1.5
    optimizer = torch.optim.Adam(params=model.parameters(), lr=lr)
    loss_com = dice_bce_loss()

    for epoch in range(1, total_epoch + 1):
        data_loader_iter = iter(data_loader)
        train_epoch_loss = 0
        train_score = 0
        for img, mask in data_loader_iter:
            img = Variable(img.cuda(), volatile=False)
            mask = Variable(mask.cuda(), volatile=False)
            optimizer.zero_grad()
            pre = model.forward(img)
            loss = loss_com(mask, pre)
            loss.backward()
            optimizer.step()
            train_epoch_loss += loss
            train_score_b = dice_coeff(mask, pre, False)
            train_score += train_score_b*batch_size
        train_score /= x_train.size(0)
        train_epoch_loss /= len(data_loader_iter)

        test_img = Variable(x_test.cuda(), volatile=False)
        test_mask = Variable(y_test.cuda(), volatile=False)
        pre_test = model.forward(test_img)
        loss_test = loss_com(test_mask, pre_test)
        test_score = dice_coeff(test_mask, pre_test, False)

        if test_score > best_test_score:
            print('1. the dice score up to ', test_score, 'from ', best_test_score, 'saving the model', file=mylog, flush=True)
            print('1. the dice score up to ', test_score, 'from ', best_test_score, 'saving the model')
            best_test_score = test_score
            solver.save('./weights/' + NAME + '.th')

        print('********', file=mylog, flush=True)
        print('epoch:', epoch, '    time:', int(time() - tic), 'train_loss:', train_epoch_loss, 'train_score:', train_score, file=mylog, flush=True)
        print('test_loss:', loss_test, 'test_dice_score: ', test_score, 'best_score is ', best_test_score, file=mylog, flush=True)

        print('********')
        print('epoch:', epoch, '    time:', int(time() - tic), 'train_loss:', train_epoch_loss, 'train_score:', train_score)
        print('test_loss:', loss_test, 'test_dice_score: ', test_score, 'best_score is ', best_test_score)

        if train_epoch_loss >= train_epoch_best_loss:
            no_optim += 1
        else:
            no_optim = 0
            train_epoch_best_loss = train_epoch_loss

        if no_optim > Constants.NUM_UPDATE_LR:
            if solver.old_lr < 5e-7:
                break
            if solver.old_lr > 5e-5:
                model.load_state_dict(torch.load('./weights/' + NAME + '.th'))
                lr /= decay_factor
                for param_group in optimizer.param_groups:
                    param_group['lr'] = lr

    print('Finish!', file=mylog, flush=True)
    print('Finish!')
    mylog.close()
Beispiel #5
0
def train(train_i=0):
    NAME = 'fold' + str(i + 1) + '_RDAUNet.th'
    # slover = MyFrame(FSP_Net, dice_bce_loss, 2e-4)
    slover = MyFrame(RDAUNet, dice_bce_loss, 2e-4)
    batchsize = 4

    txt_train = 'fold' + str(train_i + 1) + '_train.csv'
    txt_test = 'fold' + str(train_i + 1) + '_test.csv'
    dataset_train = MyDataset(txt_path=txt_train,
                              transform=transforms.ToTensor(),
                              target_transform=transforms.ToTensor())
    dataset_test = MyDataset(txt_path=txt_test,
                             transform=transforms.ToTensor(),
                             target_transform=transforms.ToTensor())
    train_loader = torch.utils.data.DataLoader(dataset,
                                               batch_size=batchsize,
                                               shuffle=True,
                                               num_workers=2)
    test_loader = torch.utils.data.DataLoader(dataset,
                                              batch_size=batchsize,
                                              shuffle=False,
                                              num_workers=2)

    mylog = open('logs/' + NAME + '.log', 'w')

    total_epoch = 100
    no_optim = 0
    train_epoch_best_loss = 10000
    best_test_score = 0
    for epoch in range(1, total_epoch + 1):
        data_loder_iter = iter(train_loader)
        data_loder_test = iter(test_loader)
        train_epoch_loss = 0
        index = 0

        tic = time()

        train_score = 0
        for img, mask in data_loder_iter:
            slover.set_input(img, mask)
            train_loss, pred = slover.optimize()
            train_score += dice_coeff(mask, pred, False)
            train_epoch_loss += train_loss
            index += 1

        test_sen = 0
        test_ppv = 0
        test_score = 0
        for img, mask in data_loder_test:
            slover.set_input(img, mask)
            pre_mask, _ = slover.test_batch()
            test_score += dice_coeff(y_test, pre_mask, False)
            test_sen += sensitive(y_test, pre_mask)
            test_ppv += positivepv(y_test, pre_mask)
        test_sen /= len(data_loder_test)
        test_ppv /= len(data_loder_test)
        test_score /= len(data_loder_test)

        if test_score > best_test_score:
            print('1. the dice score up to ',
                  test_score,
                  'from ',
                  best_test_score,
                  'saving the model',
                  file=mylog,
                  flush=True)
            print('1. the dice score up to ', test_score, 'from ',
                  best_test_score, 'saving the model')
            best_test_score = test_score
            slover.save('./weights/' + NAME + '.th')

        train_epoch_loss = train_epoch_loss / len(data_loder_iter)
        train_score = train_score / len(data_loder_iter)
        print('epoch:',
              epoch,
              '    time:',
              int(time() - tic),
              'train_loss:',
              train_epoch_loss.cpu().data.numpy(),
              'train_score:',
              train_score,
              file=mylog,
              flush=True)
        print('test_dice_loss: ',
              test_score,
              'test_sen: ',
              test_sen,
              'test_ppv: ',
              test_ppv,
              'best_score is ',
              best_test_score,
              file=mylog,
              flush=True)

        if train_epoch_loss >= train_epoch_best_loss:
            no_optim += 1
        else:
            no_optim = 0
            train_epoch_best_loss = train_epoch_loss
    print('Finish!', file=mylog, flush=True)
    print('Finish!')
    mylog.close()
Beispiel #6
0
def CE_Net_Train(train_i=0):

    NAME = 'fold' + str(i + 1) + '_6CE-Net' + Constants.ROOT.split('/')[-1]

    solver = MyFrame(CE_Net_, dice_bce_loss, 2e-4)
    batchsize = torch.cuda.device_count() * Constants.BATCHSIZE_PER_CARD  #4

    # For different 2D medical image segmentation tasks, please specify the dataset which you use
    # for examples: you could specify "dataset = 'DRIVE' " for retinal vessel detection.

    txt_train = 'fold' + str(train_i + 1) + '_train.csv'
    txt_test = 'fold' + str(train_i + 1) + '_test.csv'
    dataset_train = MyDataset(txt_path=txt_train,
                              transform=transforms.ToTensor(),
                              target_transform=transforms.ToTensor())
    dataset_test = MyDataset(txt_path=txt_test,
                             transform=transforms.ToTensor(),
                             target_transform=transforms.ToTensor())
    train_loader = torch.utils.data.DataLoader(dataset,
                                               batchsize=batchsize,
                                               shuffle=True,
                                               num_workers=2)
    test_loader = torch.utils.data.DataLoader(dataset,
                                              batchsize=batchsize,
                                              shuffle=False,
                                              num_workers=2)

    # start the logging files
    mylog = open('logs/' + NAME + '.log', 'w')

    no_optim = 0
    total_epoch = Constants.TOTAL_EPOCH  # 300
    train_epoch_best_loss = Constants.INITAL_EPOCH_LOSS  # 10000
    best_test_score = 0
    for epoch in range(1, total_epoch + 1):
        data_loader_iter = iter(train_loader)
        data_loader_test = iter(test_loader)
        train_epoch_loss = 0
        index = 0

        tic = time()

        # train
        for img, mask in data_loader_iter:
            solver.set_input(img, mask)
            train_loss, pred = solver.optimize()
            train_epoch_loss += train_loss
            index = index + 1

        # test
        test_sen = 0
        test_ppv = 0
        test_score = 0
        for img, mask in data_loader_test:
            solver.set_input(img, mask)
            pre_mask, _ = solver.test_batch()
            test_score += dice_coeff(y_test, pre_mask, False)
            test_sen += sensitive(y_test, pre_mask)
            # test_sen = test_sen.cpu().data.numpy()
            test_ppv += positivepv(y_test, pre_mask)
    # test_ppv = test_ppv.cpu().data.numpy()
        print(test_sen / len(data_loader_test),
              test_ppv / len(data_loader_test),
              test_score / len(data_loader_test))
        # solver.set_input(x_test, y_test)
        # pre_mask, _ = solver.test_batch()
        # test_score = dice_coeff(y_test, pre_mask, False)
        # test_sen = sensitive(y_test, pre_mask)
        # test_sen = test_sen.cpu().data.numpy()
        # test_ppv = positivepv(y_test, pre_mask)
        # test_ppv = test_ppv.cpu().data.numpy()
        # print('111111111111111111111',type(test_score))

        # # show the original images, predication and ground truth on the visdom.
        # show_image = (img + 1.6) / 3.2 * 255.
        # viz.img(name='images', img_=show_image[0, :, :, :])
        # viz.img(name='labels', img_=mask[0, :, :, :])
        # viz.img(name='prediction', img_=pred[0, :, :, :])

        if test_score > best_test_score:
            print('1. the dice score up to ', test_score, 'from ',
                  best_test_score, 'saving the model')
            best_test_score = test_score
            solver.save('./weights/' + NAME + '.th')

        train_epoch_loss = train_epoch_loss / len(data_loader_iter)
        # print(mylog, '********')
        print('epoch:',
              epoch,
              '    time:',
              int(time() - tic),
              'train_loss:',
              train_epoch_loss.cpu().data.numpy(),
              file=mylog,
              flush=True)
        print('test_dice_loss: ',
              test_score,
              'test_sen: ',
              test_sen,
              'test_ppv: ',
              test_ppv,
              'best_score is ',
              best_test_score,
              file=mylog,
              flush=True)

        print('********')
        print('epoch:', epoch, '    time:', int(time() - tic), 'train_loss:',
              train_epoch_loss.cpu().data.numpy())
        print('test_dice_score: ', test_score, 'test_sen: ', test_sen,
              'test_ppv: ', test_ppv, 'best_score is ', best_test_score)
        # print('train_loss:', train_epoch_loss)
        # print('SHAPE:', Constants.Image_size)

        if train_epoch_loss >= train_epoch_best_loss:
            no_optim += 1
        else:
            no_optim = 0
            train_epoch_best_loss = train_epoch_loss
            # solver.save('./weights/' + NAME + '.th')
        # if no_optim > Constants.NUM_EARLY_STOP:
        #     print(mylog, 'early stop at %d epoch' % epoch)
        #     print('early stop at %d epoch' % epoch)
        #     break
        if no_optim > Constants.NUM_UPDATE_LR:
            if solver.old_lr < 5e-7:
                break
            if solver.old_lr > 5e-4:
                solver.load('./weights/' + NAME + '.th')
                solver.update_lr(1.5, factor=True, mylog=mylog)

    print('Finish!', file=mylog, flush=True)
    print('Finish!')
    mylog.close()
Beispiel #7
0
def train_model(train_i):
    batchsize = 4
    i = train_i
    # NAME = 'F51_fold'+str(i+1)+'_UNet'
    # net = UNet(usegaussian=False).cuda()
    # NAME = 'GaPF5_fold'+str(i+1)+'_UNet'
    # net = UNet(usegaussian=True).cuda()
    # NAME = 'EMF5_NOpretrain_fold'+str(i+1)+'_FSPNet'
    # NAME = 'EMF5_fold'+str(i+1)+'_FSPNet'
    NAME = 'F5_fold' + str(i + 1) + '_FSPNet'
    net = FPN_Net(is_ema=False).cuda()
    # net.apply(weights_init)
    print(NAME)

    txt_train = 'D163N5fold' + str(train_i + 1) + '_train.csv'
    txt_test = 'D163N5fold' + str(train_i + 1) + '_test.csv'
    dataset_train = MyDataset(root='/home/wangke/ultrasound_data163/',
                              txt_path=txt_train,
                              transform=transforms.ToTensor(),
                              target_transform=transforms.ToTensor())
    dataset_test = MyDataset(root='/home/wangke/ultrasound_data163/',
                             txt_path=txt_test,
                             transform=transforms.ToTensor(),
                             target_transform=transforms.ToTensor())
    train_loader = torch.utils.data.DataLoader(dataset_train,
                                               batch_size=batchsize,
                                               shuffle=True,
                                               num_workers=2)
    test_loader = torch.utils.data.DataLoader(dataset_test,
                                              batch_size=batchsize,
                                              shuffle=False,
                                              num_workers=2)

    mylog = open('models/saved/' + NAME + '.log', 'w')
    total_epoch = 300
    optimizer = torch.optim.Adam(params=net.parameters(), lr=1e-3)
    # scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.95)
    best_test_score = 0
    dice_loss = dice_bce_loss()

    for epoch in range(1, total_epoch):
        total_loss = 0
        data_loader_iter = iter(train_loader)
        data_loader_test = iter(test_loader)
        tic = time()
        train_score = 0

        net.train()
        for img, mask in data_loader_iter:
            img = V(img.cuda(), volatile=False)
            mask_v = V(mask.cuda(), volatile=False)
            optimizer.zero_grad()
            output = net(img)
            loss = dice_loss(mask_v, output)
            loss.backward()
            optimizer.step()
            total_loss += loss
            train_score += dice_coeff(mask, output.cpu().data, False)

        test_score = 0
        test_loss = 0

        net.eval()
        with torch.no_grad():
            for img, mask in data_loader_test:
                # print(img.shape)
                img = V(img.cuda(), volatile=True)
                # mask_v = V(mask.cuda(), volatile=False)
                output = net(img)
                # test_loss += dice_loss(mask_v, output)
                # print(dice_coeff(mask, output.cpu().data, False))
                test_score += dice_coeff(mask, output.cpu().data, False)

        total_loss = total_loss / len(data_loader_iter)
        train_score = train_score / len(data_loader_iter)
        test_score = test_score / len(data_loader_test)
        # test_loss = test_loss/len(data_loader_test)

        # scheduler.step()

        if test_score > best_test_score:
            best_test_score = test_score
            torch.save(net, 'models/saved/' + NAME + '.pkl')
            print('saved, ', best_test_score, file=mylog, flush=True)
            print('saved, ', best_test_score)

        print('********', file=mylog, flush=True)
        print('epoch:',
              epoch,
              '    time:',
              int(time() - tic),
              'train_loss:',
              total_loss.cpu().data.numpy(),
              'train_score:',
              train_score,
              'test_score:',
              test_score,
              'best_score is ',
              best_test_score,
              file=mylog,
              flush=True)
        print('********')
        print('epoch:', epoch, '    time:', int(time() - tic), 'train_loss:',
              total_loss.cpu().data.numpy(), 'train_score:', train_score,
              'test_score:', test_score, 'best_score is ', best_test_score)
Beispiel #8
0
def Net_Train(train_i=0):
    # NAME = 'fold'+str(train_i+1)+'_25ATT-UNet'
    NAME = 'fold'+str(train_i+1)+'_25NEST-UNet'
    mylog = open('logs/' + NAME + '.log', 'w')
    print(NAME)
    print(NAME, file=mylog, flush=True)
    # model = AttU_Net(img_ch=1, output_ch=1).cuda()
    model = NestedUNet(in_ch=1, out_ch=1).cuda()
    # print(model)
    model = torch.nn.DataParallel(model, device_ids=range(torch.cuda.device_count()))
    # model = FPN_Net(1, 1)
    # print(model)
    folds = data2()
    test_data=folds[train_i]
    batch_size1 = 4
    batch_size = 2
    (x_train, y_train), (x_test, y_test) = load_numpy(folds, train_i)
    dataset = torch.utils.data.TensorDataset(x_train, y_train)
    data_loader = torch.utils.data.DataLoader(
        dataset,
        batch_size=batch_size1,
        shuffle=True,
        num_workers=4)

    # data_test = torch.utils.data.TensorDataset(x_test, y_test)
    # loader_test = torch.utils.data.DataLoader(
    #     data_test,
    #     batch_size=batch_size,
    #     shuffle=True,
    #     num_workers=4)
  
    no_optim = 0
    lr = 2e-4
    total_epoch=250
    train_epoch_best_loss=10000
    best_test_score = 0
    decay_factor = 1.5
    optimizer = torch.optim.Adam(params=model.parameters(), lr=lr)

    for epoch in range(1, total_epoch + 1):
        tic = time()
        data_loader_iter = iter(data_loader)
        # data_test_iter = iter(loader_test)
        train_epoch_loss = 0
        train_score = 0
        test_epoch_loss = 0
        test_score = 0
        test_sen = 0
        test_ppv = 0

        for img, mask in data_loader_iter:
            img = Variable(img.cuda(), volatile=False)
            mask = Variable(mask.cuda(), volatile=False)
            optimizer.zero_grad()
            pre = model.forward(img)
            loss = calc_loss(pre, mask)
            loss.backward()
            optimizer.step()
            train_epoch_loss += loss.data
            train_score_b = dice_coeff(mask, pre, False)
            train_score += train_score_b.data*batch_size1
        train_score /= x_train.size(0)
        train_score = train_score.cpu().data.numpy()
        train_epoch_loss /= len(data_loader_iter)
        train_epoch_loss = train_epoch_loss.cpu().data.numpy()
        # print('epoch:', epoch, '    time:', int(time() - tic), 'train_loss:', train_epoch_loss, 'train_score:', train_score)
        
        with torch.no_grad():
            # for img, mask in data_test_iter:
            img = Variable(x_test.cuda(), volatile=True)
            mask = Variable(y_test.cuda(), volatile=True)
            pre = model.forward(img)
            test_epoch_loss = calc_loss(pre, mask)
            # test_epoch_loss += loss.data
            test_score = dice_coeff(mask, pre, False)
            # test_score += test_score_b.data*batch_size
            pre[pre>0.5]=1
            pre[pre<=0.5]=0
            test_sen = sensitive(mask, pre)
            # test_sen += test_sen_b.data*batch_size
            test_ppv = positivepv(mask, pre)
            # test_ppv += test_ppv_b.data*batch_size

            
        # test_score /= x_test.size(0)
        test_score = test_score.cpu().data.numpy()
        # test_sen /= x_test.size(0)
        test_sen = test_sen.cpu().data.numpy()
        # test_ppv /= x_test.size(0)
        test_ppv = test_ppv.cpu().data.numpy()
        # test_epoch_loss /= len(data_test_iter)
        test_epoch_loss = test_epoch_loss.cpu().data.numpy()

        # x_test = Variable(x_test.cuda(), volatile=True)
        # pre_test = model.forward(x_test).cpu().data
        # loss_test = calc_loss(y_test, pre_test)
        # # loss_test = loss_test.cpu().data.numpy()
        # test_score = dice_coeff(y_test, pre_test, False)
        # # test_score = test_score.cpu().data.numpy()
        print('********', file=mylog, flush=True)
        print('epoch:', epoch, train_i, ' time:', int(time() - tic), 'train_loss:', train_epoch_loss, 'train_score:', train_score, end='  ', file=mylog, flush=True)
        print('test_loss:', test_epoch_loss, 'test_dice_score: ', test_score, 'test_sen: ', test_sen, 'test_ppv: ', test_ppv, 'best_score is ', best_test_score, file=mylog, flush=True)

        print('********')
        print('epoch:', epoch, train_i, ' time:', int(time() - tic), 'train_loss:', train_epoch_loss, 'train_score:', train_score,  end='  ')
        print('test_loss:', test_epoch_loss, 'test_dice_score: ', test_score, 'test_sen: ', test_sen, 'test_ppv: ', test_ppv, 'best_score is ', best_test_score)

        if test_score > best_test_score:
            print('1. the dice score up to ', test_score, 'from ', best_test_score, 'saving the model', file=mylog, flush=True)
            print('1. the dice score up to ', test_score, 'from ', best_test_score, 'saving the model')
            best_test_score = test_score
            torch.save(model, './weights/' + NAME + '.pkl')
            if best_test_score>0.75:
                with torch.no_grad():
                    for test in test_data:
                        img = test[0].reshape(1, 1, 256, 256).astype('float32')
                        img = torch.from_numpy(img)
                        img = Variable(img.cuda())
                        pre = model.forward(img).cpu().data.numpy()
                        plt.imsave('../../model/fold/png_constract/'+test[-1]+'_fold_z5_nest.png', pre[0,0,:,:], cmap='gray')


        if train_epoch_loss >= train_epoch_best_loss:
            no_optim += 1
        else:
            no_optim = 0
            train_epoch_best_loss = train_epoch_loss

        if no_optim > 10:
            if lr < 1e-7:
                break
            if lr > 1e-5:
                # model.load_state_dict(torch.load('./weights/' + NAME + '.th'))
                lr /= decay_factor
                print ('update learning rate: %f -> %f' % (lr*decay_factor, lr), file=mylog, flush=True)
                print ('update learning rate: %f -> %f' % (lr*decay_factor, lr))
                for param_group in optimizer.param_groups:
                    param_group['lr'] = lr

    print('Finish!', file=mylog, flush=True)
    print('Finish!')
    mylog.close()