Beispiel #1
0
 def get_loss_weight_metrics_for_plot(self):
     metrics, names = [], []
     contrast_increment = 0  # increment to help loss weight visualization
     for l, loss in self.losses.items():
         metrics.append(np.array(loss.weight_history) + contrast_increment)
         names.append(l)
         contrast_increment += 0.005
     return [metrics], [1], [names], ['lines']
Beispiel #2
0
 def get_metrics_for_plot(self):
     metrics, iters, names, types = [], [], [], []
     for m, metric in self.metrics.items():
         data = metric.get_data_for_plot()
         metrics.append(data)
         names.append(m)
         iters.append(self.notify_every)
         types.append(metric.plot_type)
     return metrics, iters, names, types
Beispiel #3
0
 def get_loss_metrics_for_plot(self, plot_organization):
     metrics, iters, names = [], [], []
     for l in plot_organization:
         if isinstance(l, (tuple, list)):
             submetrics, subiters, subnames, _ = self.get_loss_metrics_for_plot(
                 l)
             metrics.append(submetrics)
             iters.append(subiters[0])
             names.append(subnames)
         else:
             metrics.append(self.losses[l].history)
             iters.append(1)
             names.append(l)
     return metrics, iters, names, ['lines'] * len(metrics)
Beispiel #4
0
def configureModel(input, outputLen = len(RD['labels'])):
    print('  Initializing and compiling...')

    alphaSize = input.shape[2]

    model = Sequential()

    '''
    if RD['use_embedding']:
        # second value in nomiSize tuple is shift while using embedding
        model.add(Embedding(1 << nomiSize[1], RP['embedding_outputs']))
        model.add(TimeDistributed(Dense(int(RP['td_layer_multiplier'] * (alphaSize +
            nomiSize[0])), activation = 'tanh', trainable = RP['trainable_inner'])))
    else:
    '''


    model.add(TimeDistributed(Dense(300*RG['ratios'][0], activation = 'tanh', trainable = RP['trainable_inner']), input_shape = (None, alphaSize )))
    model.add(Dropout(0.30))
    model.add(GRU(300*RG['ratios'][1], trainable = RP['trainable_inner'], return_sequences = True))
    model.add(Activation('tanh', trainable = RP['trainable_inner']))
    model.add(Dropout(0.30))
    model.add(GRU(300*RG['ratios'][2], trainable = RP['trainable_inner']))
    model.add(Activation('tanh', trainable = RP['trainable_inner']))
    model.add(Dropout(0.30))
    model.add(Dense(outputLen))

    # molweight
    # model = utility.loadModel('b3d9609da78bfbf0ad1a62ee6740df3b52f104b4', 'mol_')
    # all compounds
    # model = utility.loadModel('eab15a05a70b35d119c02fcc36b1cfaf27a0f36a', 'mol_')
    # maccs
    # model = utility.loadModel('67b51a1543b5d32b05671e4a08d193eed702ca54', 'mol_')

    # model.pop()
    # model.pop()

    # for i in xrange(len(model.layers)):
        # model.layers[0].trainable = False

    '''
    model.add(Dropout(0.50))
    model.add(Dense(500))
    model.add(Activation('relu'))
    model.add(Dropout(0.50))
    model.add(Dense(500))
    model.add(Activation('relu'))
    model.add(Dropout(0.30))
    '''
    # model.add(Dense(outputLen))

    if RP['classify']:
        model.add(Activation(RP['classify_activation'], trainable = RP['trainable_inner']))

    metrics = []
    if RP['classify']:
        metrics.append('accuracy')

    model.compile(loss = RP['objective'], optimizer = OPTIMIZER, metrics = metrics)

    print('  ...done')
    return model
Beispiel #5
0
def configureEdgeModel(inputSmiles, inputFasta):
    print('  Initializing edge model and compiling...')

    smilesGRUInputShape = (None, inputSmiles.shape[2])
    # smilesGRUSize = int(RP['gru_layer_multiplier'] * smilesGRUInputShape[1])

    fastaGRUInputShape = (None, inputFasta.shape[2])
    # fastaGRUSize = int(RP['fasta_gru_layer_multiplier'] * fastaGRUInputShape[1])

    mergedOutputLen = len(RD['labels'])

    smilesModel = Sequential()
    smilesModel.add(TimeDistributed(Dense(300, activation = 'tanh', trainable = RP['trainable_inner']), input_shape = smilesGRUInputShape))
    smilesModel.add(Dropout(0.30))
    smilesModel.add(GRU(300, trainable = RP['trainable_inner'], return_sequences = True))
    smilesModel.add(Activation('tanh', trainable = RP['trainable_inner']))
    smilesModel.add(Dropout(0.30))
    smilesModel.add(GRU(300, trainable = RP['trainable_inner']))
    smilesModel.add(Activation('tanh', trainable = RP['trainable_inner']))

    # utility.setModelConsumeLess(smilesModel, 'mem')

    '''
    smilesModel = utility.loadModel('24e62794bb6d5b5c562e41a3a2cccc3525fa625f', 'smiles_')
    smilesModel.pop() # output
    smilesModel.pop() # dropout
    '''
    # utility.setModelConsumeLess(smilesModel, 'gpu')
    fastaModel = Sequential()
    fastaModel.add(TimeDistributed(Dense(300, activation = 'tanh', trainable = RP['trainable_inner']), input_shape = fastaGRUInputShape))
    fastaModel.add(Dropout(0.30))
    fastaModel.add(GRU(300, trainable = RP['trainable_inner'], return_sequences = True))
    fastaModel.add(Activation('tanh', trainable = RP['trainable_inner']))
    fastaModel.add(Dropout(0.30))
    fastaModel.add(GRU(300, trainable = RP['trainable_inner']))
    fastaModel.add(Activation('tanh', trainable = RP['trainable_inner']))

    # utility.setModelConsumeLess(fastaModel, 'mem')

    '''
    fastaModel = utility.loadModel('e6beb8b7e146b9ab46a71db8f3001bf62d96ff08', 'fasta_')
    fastaModel.pop() # activation
    fastaModel.pop() # output
    fastaModel.pop() # dropout
    '''

    # utility.setModelConsumeLess(fastaModel, 'gpu')

    merged = Merge([smilesModel, fastaModel], mode='concat')

    mergedModel = Sequential()
    mergedModel.add(merged)

    mergedModel.add(Dense(300))
    mergedModel.add(Activation('relu'))
    mergedModel.add(Dropout(0.3))

    mergedModel.add(Dense(300))
    mergedModel.add(Activation('relu'))
    mergedModel.add(Dropout(0.3))

    mergedModel.add(Dense(mergedOutputLen))

    if RP['classify']:
        mergedModel.add(Activation(RP['classify_activation'], trainable = RP['trainable_inner']))

    metrics = []
    if RP['classify']:
        metrics.append('accuracy')

    mergedModel.compile(loss = RP['objective'], optimizer = OPTIMIZER, metrics = metrics)

    print('  ...done')
    return mergedModel