#===========================================# r = np.array([2, 1]) numobs = len(y) k = [n_clusters] seed = 1 init_seed = 2 eps = 1E-05 it = 50 maxstep = 100 prince_init = dim_reduce_init(y, n_clusters, k, r, nj, var_distrib, seed = None,\ use_famd=True) m, pred = misc(labels_oh, prince_init['classes'], True) print(m) print(confusion_matrix(labels_oh, pred)) print(silhouette_score(dm, pred, metric='precomputed')) ''' init = prince_init seed = None y = y_np perform_selec = False os.chdir('C:/Users/rfuchs/Documents/GitHub/M1DGMM') ''' out = M1DGMM(y_np, 'auto', r, k, prince_init, var_distrib, nj, it,\ eps, maxstep, seed, perform_selec = False) m, pred = misc(labels_oh, out['classes'], True)
r = {'c': [nb_cont], 'd': [3], 't': [2, 1]} k = {'c': [1], 'd': [2], 't': [n_clusters, 1]} seed = 1 init_seed = 2 eps = 1E-05 it = 15 maxstep = 100 # MCA init prince_init = dim_reduce_init(y, n_clusters, k, r, nj, var_distrib, seed=None) out = MDGMM(y_np, n_clusters, r, k, prince_init, var_distrib, nj, it, eps,\ maxstep, seed, perform_selec = False) m, pred = misc(labels_oh, out['classes'], True) micro = precision_score(labels_oh, pred, average='micro') macro = precision_score(labels_oh, pred, average='macro') print('Silhouette', silhouette_score(dm, pred, metric='precomputed')) print('Micro', micro) print('Macro', macro) #===========================================# # Final plotting #===========================================# # Plot the final groups import matplotlib import matplotlib.pyplot as plt