Beispiel #1
0
def run_test():
    m = mfem.DenseMatrix(3, 3)
    m.Assign(np.arange(9.).reshape(3, 3))
    m.Print()
    print(np.arange(9.).reshape(3, 3))

    x = np.zeros(5) + 1
    y = np.zeros(5) + 2
    z = np.zeros(5) + 3
    mm = mfem.DenseMatrix(3, 5)
    mm.Assign(np.vstack([x, y, z]))
    mm.Print()
    mfem.Vector(mm.GetData(), 15).Print()
Beispiel #2
0
def run_test():
    #meshfile =expanduser(join(mfem_path, 'data', 'beam-tri.mesh'))
    meshfile = expanduser(join(mfem_path, 'data', 'semi_circle.mesh'))
    mesh = mfem.Mesh(meshfile, 1, 1)
    dim = mesh.Dimension()
    sdim = mesh.SpaceDimension()
    fec = mfem.H1_FECollection(1, dim)
    fespace = mfem.FiniteElementSpace(mesh, fec, 1)
    print('Number of finite element unknowns: ' + str(fespace.GetTrueVSize()))

    c = mfem.ConstantCoefficient(1.0)
    gf = mfem.GridFunction(fespace)
    gf.ProjectCoefficient(c)

    gf.Save('out_test_gridfunc.gf')
Beispiel #3
0
def run_test():    
    mesh = mfem.Mesh(10, 10, "TRIANGLE")

    fec = mfem.H1_FECollection(1, mesh.Dimension())
    fespace = mfem.FiniteElementSpace(mesh, fec)

    gf = mfem.GridFunction(fespace)
    gf.Assign(1.0)
    odata = gf.GetDataArray().copy()

    visit_dc = mfem.VisItDataCollection("test_gf", mesh)
    visit_dc.RegisterField("gf", gf)
    visit_dc.Save()

    mesh2 = mfem.Mesh("test_gf_000000/mesh.000000")
    check_mesh(mesh, mesh2, ".mesh2 does not agree with original")

    gf2 = mfem.GridFunction(mesh2, "test_gf_000000/gf.000000")
    odata2 = gf2.GetDataArray().copy()
    check(odata, odata2, "odata2 file does not agree with original")

    visit_dc = mfem.VisItDataCollection("test_gf_gz", mesh)
    visit_dc.SetCompression(True)
    visit_dc.RegisterField("gf", gf)
    visit_dc.Save()

    with gzip.open("test_gf_gz_000000/mesh.000000", 'rt') as f:
       sio = io.StringIO(f.read())
    mesh3 = mfem.Mesh(sio)
    check_mesh(mesh, mesh3, ".mesh3 does not agree with original")

    with gzip.open("test_gf_gz_000000/gf.000000", 'rt') as f:
       sio = io.StringIO(f.read())

    # This is where the error is:
    gf3 = mfem.GridFunction(mesh3, sio)
    odata3 = gf3.GetDataArray()
    check(odata, odata3, "gf3 file does not agree with original")

    mesh4 = mfem.Mesh("test_gf_gz_000000/mesh.000000")
    check_mesh(mesh, mesh4, ".mesh4 does not agree with original")

    gf4 = mfem.GridFunction(mesh3, "test_gf_gz_000000/gf.000000")
    odata4 = gf4.GetDataArray()

    check(odata, odata4, "gf3 file does not agree with original")

    print("PASSED")    
Beispiel #4
0
def test_course_to_file_map():
    mesh_file = "../data/inline-quad.mesh"
    device = mfem.Device('cpu')

    mesh = mfem.Mesh(mesh_file, 1, 1)

    refinements = mfem.RefinementArray()
    refinements.Append(mfem.Refinement(0, 0b11))
    refinements.Append(mfem.Refinement(1, 0b10))
    refinements.Append(mfem.Refinement(2, 0b01))

    mesh.GeneralRefinement(refinements)

    cft = mesh.GetRefinementTransforms()

    coarse_to_fine = mfem.Table()
    coarse_to_ref_type = mfem.intArray()
    ref_type_to_matrix = mfem.Table()
    ref_type_to_geom = mfem.GeometryTypeArray()

    cft.GetCoarseToFineMap(mesh,
                           coarse_to_fine,
                           coarse_to_ref_type,
                           ref_type_to_matrix,
                           ref_type_to_geom)
    print("coarse_to_fine element number mapping:")
    coarse_to_fine.Print()

    print("ref_type_to_geom mapping:")

    for i in range(ref_type_to_geom.Size()):
        g = ref_type_to_geom[i]
        print("ref_type: " + str(i) + "=> geom: " + str(g))
Beispiel #5
0
def run_test():
    #meshfile = expanduser(join(mfem_path, 'data', 'semi_circle.mesh'))
    meshfile = "../data/amr-quad.mesh"
    mesh = mfem.Mesh(meshfile, 1, 1)
    dim = mesh.Dimension()
    sdim = mesh.SpaceDimension()
    fec = mfem.H1_FECollection(1, dim)
    fespace = mfem.FiniteElementSpace(mesh, fec, 1)
    print('Number of finite element unknowns: ' + str(fespace.GetTrueVSize()))

    c = mfem.ConstantCoefficient(1.0)
    gf = mfem.GridFunction(fespace)
    gf.ProjectCoefficient(c)

    odata = gf.GetDataArray().copy()

    gf.Save("out_test_gz.gf")
    gf2 = mfem.GridFunction(mesh, "out_test_gz.gf")
    odata2 = gf2.GetDataArray().copy()
    check(odata, odata2, "text file does not agree with original")

    gf.Save("out_test_gz.gz")
    gf2.Assign(0.0)
    gf2 = mfem.GridFunction(mesh, "out_test_gz.gz")
    odata2 = gf2.GetDataArray().copy()
    check(odata, odata2, ".gz file does not agree with original")

    gf.Print("out_test_gz.dat")
    gf2.Assign(0.0)
    gf2.Load("out_test_gz.dat", gf.Size())
    odata2 = gf2.GetDataArray().copy()
    check(odata, odata2, ".dat file does not agree with original")

    gf.Print("out_test_gz.dat.gz")
    gf2.Assign(0.0)
    gf2.Load("out_test_gz.dat.gz", gf.Size())
    odata2 = gf2.GetDataArray().copy()
    check(odata, odata2, ".dat file does not agree with original (gz)")

    import gzip
    import io
    gf.Print("out_test_gz.dat2.gz")
    with gzip.open("out_test_gz.dat2.gz", 'rt') as f:
        sio = io.StringIO(f.read())
    gf3 = mfem.GridFunction(fespace)
    gf3.Load(sio, gf.Size())
    odata3 = gf3.GetDataArray().copy()
    check(odata, odata3, ".dat file does not agree with original(gz-io)")

    c = mfem.ConstantCoefficient(2.0)
    gf.ProjectCoefficient(c)
    odata = gf.GetDataArray().copy()

    o = io.StringIO()
    gf.Print(o)
    gf2.Load(o, gf.Size())
    odata2 = gf2.GetDataArray().copy()
    check(odata, odata2, "StringIO does not agree with original")

    print("GridFunction .gf, .gz .dat and StringIO agree with original")

    mesh2 = mfem.Mesh()
    mesh.Print("out_test_gz.mesh")
    mesh2.Load("out_test_gz.mesh")
    check_mesh(mesh, mesh2, ".mesh does not agree with original")

    mesh2 = mfem.Mesh()
    mesh.Print("out_test_gz.mesh.gz")
    mesh2.Load("out_test_gz.mesh.gz")

    check_mesh(mesh, mesh2, ".mesh.gz does not agree with original")

    mesh3 = mfem.Mesh()
    mesh.PrintGZ("out_test_gz3.mesh")
    mesh3.Load("out_test_gz3.mesh")
    check_mesh(mesh, mesh3,
               ".mesh (w/o .gz exntension) does not agree with original")

    o = io.StringIO()
    mesh2 = mfem.Mesh()
    mesh.Print(o)
    mesh2.Load(o)
    check_mesh(mesh, mesh2, ".mesh.gz does not agree with original")

    print("Mesh .mesh, .mesh.gz and StringIO agree with original")

    print("PASSED")
Beispiel #6
0
def run_test():
    #meshfile = expanduser(join(mfem_path, 'data', 'semi_circle.mesh'))
    mesh = mfem.Mesh(3, 3, 3, "TETRAHEDRON")
    mesh.ReorientTetMesh()

    order = 1

    dim = mesh.Dimension()
    sdim = mesh.SpaceDimension()
    fec1 = mfem.H1_FECollection(order, dim)
    fespace1 = mfem.FiniteElementSpace(mesh, fec1, 1)

    fec2 = mfem.ND_FECollection(order, dim)
    fespace2 = mfem.FiniteElementSpace(mesh, fec2, 1)

    print("Element order :", order)

    print('Number of H1 finite element unknowns: ' +
          str(fespace1.GetTrueVSize()))
    print('Number of ND finite element unknowns: ' +
          str(fespace2.GetTrueVSize()))

    print("Checking scalar")

    gf = mfem.GridFunction(fespace1)
    c1 = mfem.NumbaFunction(s_func, sdim).GenerateCoefficient()
    c2 = s_coeff()

    gf.Assign(0.0)
    start = time.time()
    gf.ProjectCoefficient(c1)
    end = time.time()
    data1 = gf.GetDataArray().copy()
    print("Numba time (scalar)", end - start)

    gf.Assign(0.0)
    start = time.time()
    gf.ProjectCoefficient(c2)
    end = time.time()
    data2 = gf.GetDataArray().copy()
    print("Python time (scalar)", end - start)

    check(data1, data2, "scalar coefficient does not agree with original")

    print("Checking vector")
    gf = mfem.GridFunction(fespace2)
    c3 = mfem.VectorNumbaFunction(v_func, sdim, dim).GenerateCoefficient()
    c4 = v_coeff(dim)

    gf.Assign(0.0)
    start = time.time()
    gf.ProjectCoefficient(c3)
    end = time.time()
    data1 = gf.GetDataArray().copy()
    print("Numba time (vector)", end - start)

    gf.Assign(0.0)
    start = time.time()
    gf.ProjectCoefficient(c4)
    end = time.time()
    data2 = gf.GetDataArray().copy()
    print("Python time (vector)", end - start)

    check(data1, data2, "vector coefficient does not agree with original")

    print("Checking matrix")
    a1 = mfem.BilinearForm(fespace2)
    a2 = mfem.BilinearForm(fespace2)
    c4 = mfem.MatrixNumbaFunction(m_func, sdim, dim).GenerateCoefficient()
    c5 = m_coeff(dim)

    a1.AddDomainIntegrator(mfem.VectorFEMassIntegrator(c4))
    a2.AddDomainIntegrator(mfem.VectorFEMassIntegrator(c5))

    start = time.time()
    a1.Assemble()
    end = time.time()
    a1.Finalize()
    M1 = a1.SpMat()

    print("Numba time (matrix)", end - start)

    start = time.time()
    a2.Assemble()
    end = time.time()
    a2.Finalize()
    M2 = a2.SpMat()
    print("Python time (matrix)", end - start)

    #from mfem.commmon.sparse_utils import sparsemat_to_scipycsr
    #csr1 = sparsemat_to_scipycsr(M1, float)
    #csr2 = sparsemat_to_scipycsr(M2, float)

    check(M1.GetDataArray(), M2.GetDataArray(),
          "matrix coefficient does not agree with original")
    check(M1.GetIArray(), M2.GetIArray(),
          "matrix coefficient does not agree with original")
    check(M1.GetJArray(), M2.GetJArray(),
          "matrix coefficient does not agree with original")

    print("PASSED")
Beispiel #7
0
def run_test():
    #meshfile = expanduser(join(mfem_path, 'data', 'semi_circle.mesh'))
    meshfile = "../data/amr-quad.mesh"
    mesh = mfem.Mesh(meshfile, 1, 1)
    dim = mesh.Dimension()
    sdim = mesh.SpaceDimension()
    fec = mfem.H1_FECollection(1, dim)
    fespace = mfem.FiniteElementSpace(mesh, fec, 1)
    print('Number of finite element unknowns: ' + str(fespace.GetTrueVSize()))

    c = mfem.ConstantCoefficient(1.0)
    gf = mfem.GridFunction(fespace)
    gf.ProjectCoefficient(c)

    print("write mesh to STDOUT")
    mesh.Print(mfem.STDOUT)
    print("creat VTK file to file")
    mesh.PrintVTK('mesh.vtk', 1)
    print("creat VTK to STDOUT")
    mesh.PrintVTK(mfem.STDOUT, 1)
    print("save GridFunction to file")
    gf.Save('out_test_gridfunc.gf')
    gf.SaveVTK(mfem.wFILE('out_test_gridfunc1.vtk'), 'data', 1)
    print("save GridFunction to file in VTK format")
    gf.SaveVTK('out_test_gridfunc2.vtk', 'data', 1)
    print("Gridfunction to STDOUT")
    gf.Save(mfem.STDOUT)

    o = io.StringIO()
    count = gf.Save(o)
    count2 = gf.SaveVTK(o, 'data', 1)
    print("length of data ", count, count2)
    print('result: ', o.getvalue())
Beispiel #8
0
def run_test():
    print("Test complex_operator module")
    Nvert = 6
    Nelem = 8
    Nbelem = 2

    mesh = mfem.Mesh(2, Nvert, Nelem, 2, 3)
    tri_v = [[1., 0., 0.], [0., 1., 0.], [-1., 0., 0.], [0., -1., 0.],
             [0., 0., 1.], [0., 0., -1.]]
    tri_e = [[0, 1, 4], [1, 2, 4], [2, 3, 4], [3, 0, 4], [1, 0, 5], [2, 1, 5],
             [3, 2, 5], [0, 3, 5]]
    tri_l = [[1, 4], [1, 2]]

    for j in range(Nvert):
        mesh.AddVertex(tri_v[j])
    for j in range(Nelem):
        mesh.AddTriangle(tri_e[j], 1)
    for j in range(Nbelem):
        mesh.AddBdrSegment(tri_l[j], 1)

    mesh.FinalizeTriMesh(1, 1, True)
    dim = mesh.Dimension()
    order = 1
    fec = mfem.H1_FECollection(order, dim)

    if use_parallel:
        mesh = mfem.ParMesh(MPI.COMM_WORLD, mesh)
        fes = mfem.ParFiniteElementSpace(mesh, fec)
        a1 = mfem.ParBilinearForm(fes)
        a2 = mfem.ParBilinearForm(fes)
    else:
        fes = mfem.FiniteElementSpace(mesh, fec)
        a1 = mfem.BilinearForm(fes)
        a2 = mfem.BilinearForm(fes)
    one = mfem.ConstantCoefficient(1.0)
    a1.AddDomainIntegrator(mfem.DiffusionIntegrator(one))
    a1.Assemble()
    a1.Finalize()

    a2.AddDomainIntegrator(mfem.DiffusionIntegrator(one))
    a2.Assemble()
    a2.Finalize()

    if use_parallel:
        M1 = a1.ParallelAssemble()
        M2 = a2.ParallelAssemble()
        M1.Print('M1')
        width = fes.GetTrueVSize()
        #X = mfem.HypreParVector(fes)
        #Y = mfem.HypreParVector(fes)
        #X.SetSize(fes.TrueVSize())
        #Y.SetSize(fes.TrueVSize())
        #from mfem.common.parcsr_extra import ToScipyCoo
        #MM1 = ToScipyCoo(M1)
        #print(MM1.toarray())
        #print(MM1.dot(np.ones(6)))
    else:
        M1 = a1.SpMat()
        M2 = a2.SpMat()
        M1.Print('M1')
        width = fes.GetVSize()

        #X = mfem.Vector()
        #Y = mfem.Vector()
        #X.SetSize(M1.Width())
        #Y.SetSize(M1.Height())
        #from mfem.common.sparse_utils import sparsemat_to_scipycsr
        #MM1 = sparsemat_to_scipycsr(M1, np.float)
        #print(MM1.toarray())
        #print(MM1.dot(np.ones(6)))
    #X.Assign(0.0)
    #X[0] = 1.0
    #M1.Mult(X, Y)
    #print(Y.GetDataArray())

    Mc = mfem.ComplexOperator(M1, M2, hermitan=True)
    offsets = mfem.intArray([0, width, width])
    offsets.PartialSum()

    x = mfem.BlockVector(offsets)
    y = mfem.BlockVector(offsets)

    x.GetBlock(0).Assign(0)
    if myid == 0:
        x.GetBlock(0)[0] = 1.0
    x.GetBlock(1).Assign(0)
    if myid == 0:
        x.GetBlock(1)[0] = 1.0

    Mc.Mult(x, y)
    print("x", x.GetDataArray())
    print("y", y.GetDataArray())

    if myid == 0:
        x.GetBlock(1)[0] = -1.0

    x.Print()
    Mc.Mult(x, y)
    print("x", x.GetDataArray())
    print("y", y.GetDataArray())