Beispiel #1
0
    def __init__(self, config_space, objective_func, R,
                 num_iter=10, n_workers=1, eta=3, es_gap=9, rho=0.7,
                 random_state=1, method_id="Default"):
        BaseFacade.__init__(self, objective_func, n_workers=n_workers, need_lc=True, method_name=method_id)
        self.seed = random_state
        self.config_space = config_space
        self.config_space.seed(self.seed)
        self.R = R
        self.num_iter = num_iter
        self.eta = eta
        self.logeta = lambda x: log(x) / log(self.eta)
        self.s_max = int(self.logeta(R))
        self.inner_iteration_n = (self.s_max + 1) * (self.s_max + 1)

        types, bounds = get_types(config_space)
        self.num_config = len(bounds)
        self.surrogate = RandomForestWithInstances(types=types, bounds=bounds)
        self.acquisition_func = EI(model=self.surrogate)
        # TODO: add SMAC's optimization algorithm.
        self.acq_optimizer = RandomSampling(self.acquisition_func, config_space,
                                            n_samples=max(500, 50 * self.num_config))

        self.incumbent_configs = []
        self.incumbent_obj = []

        self.lcnet_model = LC_ES()
        self.early_stop_gap = es_gap
        self.es_rho = rho
        self.lc_training_x = None
        self.lc_training_y = None
Beispiel #2
0
def mini_smac(learn_delta):
    sample_num_m = s_mid
    sample_num_l = s_min
    if not learn_delta:
        sample_num_m = s_min

    start_time = time.time()
    config_space = create_configspace()
    types, bounds = get_types(config_space)
    num_hp = len(bounds)
    surrogate = RandomForestWithInstances(types=types, bounds=bounds)
    acquisition_func = EI(model=surrogate)
    acq_optimizer = RandomSampling(acquisition_func, config_space, n_samples=max(500, 50 * num_hp))
    X = []
    y = []
    y_delta = []
    c = []
    inc_y = 1.

    # Initial design.
    for _ in range(num_init):
        init_configs = sample_configurations(config_space, num_init)
        for config in init_configs:
            perf_t, _ = objective_function((config.get_dictionary(), sample_num_m))
            X.append(config)
            y.append(perf_t)
            if perf_t < inc_y:
                inc_y = perf_t
            c.append([time.time()-start_time, inc_y])
            if learn_delta:
                perf_l, _ = objective_function((config.get_dictionary(), sample_num_l))
                y_delta.append(perf_t - perf_l)
            else:
                y_delta.append(perf_t)

    # BO iterations.
    for _ in range(num_iter - num_init):
        # Update the surrogate model.
        surrogate.train(convert_configurations_to_array(X), np.array(y, dtype=np.float64))

        # Use EI acq to choose next config.
        incumbent = dict()
        best_index = np.argmin(y)
        incumbent['obj'] = y[best_index]
        incumbent['config'] = X[best_index]
        acquisition_func.update(model=surrogate, eta=incumbent)
        next_config = acq_optimizer.maximize(batch_size=1)[0]
        perf_t, _ = objective_function((next_config.get_dictionary(), sample_num_m))
        X.append(next_config)
        y.append(perf_t)
        if perf_t < inc_y:
            inc_y = perf_t
        c.append([time.time() - start_time, inc_y])
        if learn_delta:
            perf_l, _ = objective_function((config.get_dictionary(), sample_num_l))
            y_delta.append(perf_t - perf_l)
        else:
            y_delta.append(perf_t)

    return [convert_configurations_to_array(X), np.array(y_delta, dtype=np.float64)]
Beispiel #3
0
    def __init__(self,
                 config_space,
                 objective_func,
                 R,
                 num_iter=10,
                 eta=3,
                 n_workers=1):
        BaseFacade.__init__(self, objective_func, n_workers=n_workers)
        self.config_space = config_space
        self.R = R
        self.eta = eta
        self.logeta = lambda x: log(x) / log(self.eta)
        self.s_max = int(self.logeta(self.R))
        self.B = (self.s_max + 1) * self.R
        self.num_iter = num_iter

        types, bounds = get_types(config_space)
        self.num_config = len(bounds)

        # Define the multi-fidelity ensemble surrogate.
        init_weight = [0.]
        init_weight.extend([1 / self.s_max] * self.s_max)
        self.weighted_surrogate = WeightedRandomForestCluster(
            types, bounds, self.s_max, self.eta, init_weight, 'gpoe')
        self.weighted_acquisition_func = EI(model=self.weighted_surrogate)
        self.weighted_acq_optimizer = RandomSampling(
            self.weighted_acquisition_func,
            config_space,
            n_samples=max(1000, 50 * self.num_config))

        self.incumbent_configs = []
        self.incumbent_obj = []
        self.iterate_id = 0
        self.iterate_r = []

        # Store the multi-fidelity evaluation data: D_1, ..., D_K.
        self.target_x = dict()
        self.target_y = dict()
        for index, item in enumerate(
                np.logspace(0, self.s_max, self.s_max + 1, base=self.eta)):
            r = int(item)
            self.iterate_r.append(r)
            self.target_x[r] = []
            self.target_y[r] = []
Beispiel #4
0
    def __init__(self,
                 config_space: ConfigurationSpace,
                 objective_func,
                 R,
                 num_iter=10000,
                 eta=3,
                 p=0.3,
                 n_workers=1,
                 random_state=1,
                 method_id='Default'):
        BaseFacade.__init__(self,
                            objective_func,
                            n_workers=n_workers,
                            method_name=method_id)
        self.config_space = config_space
        self.seed = random_state
        self.config_space.seed(self.seed)
        self.p = p
        self.R = R
        self.eta = eta
        self.logeta = lambda x: log(x) / log(self.eta)
        self.s_max = int(self.logeta(self.R))
        self.B = (self.s_max + 1) * self.R
        self.num_iter = num_iter

        types, bounds = get_types(config_space)
        self.num_config = len(bounds)
        self.surrogate = RandomForestWithInstances(types=types, bounds=bounds)
        self.acquisition_func = EI(model=self.surrogate)
        self.acq_optimizer = RandomSampling(self.acquisition_func,
                                            config_space,
                                            n_samples=max(
                                                500, 50 * self.num_config))

        self.incumbent_configs = []
        self.incumbent_obj = []
Beispiel #5
0
class HOIST(BaseFacade):
    def __init__(self,
                 config_space,
                 objective_func,
                 R,
                 num_iter=10,
                 eta=3,
                 n_workers=1):
        BaseFacade.__init__(self, objective_func, n_workers=n_workers)
        self.config_space = config_space
        self.R = R
        self.eta = eta
        self.logeta = lambda x: log(x) / log(self.eta)
        self.s_max = int(self.logeta(self.R))
        self.B = (self.s_max + 1) * self.R
        self.num_iter = num_iter

        types, bounds = get_types(config_space)
        self.num_config = len(bounds)

        # Define the multi-fidelity ensemble surrogate.
        init_weight = [0.]
        init_weight.extend([1 / self.s_max] * self.s_max)
        self.weighted_surrogate = WeightedRandomForestCluster(
            types, bounds, self.s_max, self.eta, init_weight, 'gpoe')
        self.weighted_acquisition_func = EI(model=self.weighted_surrogate)
        self.weighted_acq_optimizer = RandomSampling(
            self.weighted_acquisition_func,
            config_space,
            n_samples=max(1000, 50 * self.num_config))

        self.incumbent_configs = []
        self.incumbent_obj = []
        self.iterate_id = 0
        self.iterate_r = []

        # Store the multi-fidelity evaluation data: D_1, ..., D_K.
        self.target_x = dict()
        self.target_y = dict()
        for index, item in enumerate(
                np.logspace(0, self.s_max, self.s_max + 1, base=self.eta)):
            r = int(item)
            self.iterate_r.append(r)
            self.target_x[r] = []
            self.target_y[r] = []

    @BaseFacade.process_manage
    def run(self):
        try:
            for iter in range(1, 1 + self.num_iter):
                self.logger.info('-' * 50)
                self.logger.info("HOIST algorithm: %d/%d iteration starts." %
                                 (iter, self.num_iter))
                start_time = time.time()
                self.iterate()
                time_elapsed = (time.time() - start_time) / 60
                self.logger.info("iteration took %.2f min." % time_elapsed)
                self.iterate_id += 1
                self.save_intemediate_statistics()
        except Exception as e:
            print(e)
            self.logger.error(str(e))
            # clear the immediate result.
            self.remove_immediate_model()

    def iterate(self, skip_last=0):

        for s in reversed(range(self.s_max + 1)):
            # Initial number of configurations
            n = int(ceil(self.B / self.R / (s + 1) * self.eta**s))
            # Initial number of iterations per config
            r = int(self.R * self.eta**(-s))

            # Choose a batch of configurations in different mechanisms.
            start_time = time.time()
            T = self.choose_next(n)
            time_elapsed = time.time() - start_time
            self.logger.info("Choosing next configurations took %.2f sec." %
                             time_elapsed)

            extra_info = None
            last_run_num = None

            for i in range((s + 1) - int(skip_last)):  # Changed from s + 1

                # Run each of the n configs for <iterations> and keep best (n_configs / eta) configurations
                n_configs = n * self.eta**(-i)
                n_iterations = r * self.eta**(i)

                n_iter = n_iterations
                if last_run_num is not None and not self.restart_needed:
                    n_iter -= last_run_num
                last_run_num = n_iterations

                self.logger.info(
                    "HOIST: %d configurations WITH %d units of resource" %
                    (int(n_configs), int(n_iterations)))

                ret_val, early_stops = self.run_in_parallel(
                    T, n_iter, extra_info)
                val_losses = [item['loss'] for item in ret_val]
                ref_list = [item['ref_id'] for item in ret_val]

                self.target_x[int(n_iterations)].extend(T)
                self.target_y[int(n_iterations)].extend(val_losses)

                if int(n_iterations) == self.R:
                    self.incumbent_configs.extend(T)
                    self.incumbent_obj.extend(val_losses)

                # Select a number of well-performed configurations for the next loop.
                indices = np.argsort(val_losses)
                if len(T) == sum(early_stops):
                    break
                if len(T) >= self.eta:
                    T = [T[i] for i in indices if not early_stops[i]]
                    extra_info = [
                        ref_list[i] for i in indices if not early_stops[i]
                    ]
                    reduced_num = int(n_configs / self.eta)
                    T = T[0:reduced_num]
                    extra_info = extra_info[0:reduced_num]
                else:
                    T = [T[indices[0]]]
                    extra_info = [ref_list[indices[0]]]
                incumbent_loss = val_losses[indices[0]]
                self.add_stage_history(
                    self.stage_id, min(self.global_incumbent, incumbent_loss))
                self.stage_id += 1
            self.remove_immediate_model()

            # Augment the intermediate evaluation data.
            for item in self.iterate_r[self.iterate_r.index(r):]:
                # objective value normalization: min-max linear normalization
                normalized_y = minmax_normalization(self.target_y[item])
                self.weighted_surrogate.train(convert_configurations_to_array(
                    self.target_x[item]),
                                              np.array(normalized_y,
                                                       dtype=np.float64),
                                              r=item)
            # Update the parameter in the ensemble model.
            if len(self.target_y[self.iterate_r[-1]]) >= 2:
                self.update_weight()

    def choose_next(self, num_config):
        if len(self.target_y[self.iterate_r[-1]]) == 0:
            return sample_configurations(self.config_space, num_config)

        conf_cnt = 0
        next_configs = []
        total_cnt = 0

        incumbent = dict()
        max_r = self.iterate_r[-1]
        best_index = np.argmin(self.target_y[max_r])
        incumbent['config'] = self.target_x[max_r][best_index]
        approximate_obj = self.weighted_surrogate.predict(
            convert_configurations_to_array([incumbent['config']]))[0]
        incumbent['obj'] = approximate_obj
        self.weighted_acquisition_func.update(model=self.weighted_surrogate,
                                              eta=incumbent)

        while conf_cnt < num_config and total_cnt < 2 * num_config:
            rand_config = self.weighted_acq_optimizer.maximize(batch_size=1)[0]
            if rand_config not in next_configs:
                next_configs.append(rand_config)
                conf_cnt += 1
            total_cnt += 1
        if conf_cnt < num_config:
            next_configs = expand_configurations(next_configs,
                                                 self.config_space, num_config)
        return next_configs

    def update_weight(self):
        max_r = self.iterate_r[-1]
        r_list = self.iterate_r

        incumbent_configs = self.target_x[max_r]
        test_x = convert_configurations_to_array(incumbent_configs)
        test_y = minmax_normalization(self.target_y[max_r])

        predictions = []
        for i, r in enumerate(r_list[:-1]):
            mean, _ = self.weighted_surrogate.surrogate_container[r].predict(
                test_x)
            predictions.append(mean.flatten().tolist())
        predictions.append(
            self.obtain_cv_prediction(test_x, np.array(test_y,
                                                       dtype=np.float64)))
        solution, status = self.solve_optpro(
            np.mat(predictions).T,
            np.mat(test_y).T)
        if status:
            solution[solution < 1e-3] = 0.
            self.logger.info('New weight: %s' % str(solution))
            for i, r in enumerate(r_list):
                self.weighted_surrogate.surrogate_weight[r] = solution[i]

    def obtain_cv_prediction(self, X, y):
        types, bounds = get_types(self.config_space)
        base_model = RandomForestWithInstances(types=types, bounds=bounds)
        instance_num = len(y)
        output_pred = []
        if instance_num < 10:
            for i in range(instance_num):
                row_indexs = list(range(instance_num))
                del row_indexs[i]
                base_model.train(X[row_indexs], y[row_indexs])
                mu, _ = base_model.predict(X)
                output_pred.append(mu[i, 0])
        else:
            # Conduct 5-fold cross validation.
            K = 5
            fold_num = instance_num // K
            for i in range(K):
                row_indexs = list(range(instance_num))
                bound = (instance_num - i * fold_num) if i == (K -
                                                               1) else fold_num
                for index in range(bound):
                    del row_indexs[i * fold_num]
                base_model.train(X[row_indexs, :], y[row_indexs])
                mu, _ = base_model.predict(X)
                start = i * fold_num
                end = start + bound
                output_pred.extend(mu[start:end, 0].tolist())
        assert len(output_pred) == instance_num
        return output_pred

    def solve_optpro(self, pred_y, true_y, debug=False):

        # The optimization function.
        def Loss_func(true_y, pred_y):
            # Compute the rank loss for varied loss function.
            true_y = np.array(true_y)[:, 0]
            pred_y = np.array(pred_y)[:, 0]
            comb = itertools.combinations(range(true_y.shape[0]), 2)
            pairs = list()
            # Compute the pairs.
            for _, (i, j) in enumerate(comb):
                if true_y[i] > true_y[j]:
                    pairs.append((i, j))
                elif true_y[i] < true_y[j]:
                    pairs.append((j, i))
            loss = 0.
            pair_num = len(pairs)
            if pair_num == 0:
                return 0.
            for (i, j) in pairs:
                loss += np.log(1 + np.exp(pred_y[j] - pred_y[i]))
            return loss

        # The derivative function.
        def Loss_der(true_y, A, x):
            y_pred = A * np.mat(x).T
            true_y = np.array(true_y)[:, 0]
            pred_y = np.array(y_pred)[:, 0]

            comb = itertools.combinations(range(true_y.shape[0]), 2)
            pairs = list()
            # Compute the pairs.
            for _, (i, j) in enumerate(comb):
                if true_y[i] > true_y[j]:
                    pairs.append((i, j))
                elif true_y[i] < true_y[j]:
                    pairs.append((j, i))
            # Calculate the derivatives.
            grad = np.zeros(A.shape[1])
            pair_num = len(pairs)
            if pair_num == 0:
                return grad
            for (i, j) in pairs:
                e_z = np.exp(pred_y[j] - pred_y[i])
                grad += e_z / (1 + e_z) * (A[j] - A[i]).A1
            return grad

        A, b = pred_y, true_y
        n, m = A.shape
        # Add constraints.
        ineq_cons = {
            'type': 'ineq',
            'fun': lambda x: np.array(x),
            'jac': lambda x: np.eye(len(x))
        }
        eq_cons = {
            'type': 'eq',
            'fun': lambda x: np.array([sum(x) - 1]),
            'jac': lambda x: np.array([1.] * len(x))
        }

        x0 = np.array([1. / m] * m)

        def f(x):
            w = np.mat(x).T
            return Loss_func(b, A * w)

        def f_der(x):
            return Loss_der(b, A, x)

        res = minimize(f,
                       x0,
                       method='SLSQP',
                       jac=f_der,
                       constraints=[eq_cons, ineq_cons],
                       options={
                           'ftol': 1e-8,
                           'disp': False
                       })

        status = False if np.isnan(res.x).any() else True
        if not res.success and status:
            res.x[res.x < 0.] = 0.
            res.x[res.x > 1.] = 1.
            if sum(res.x) > 1.5:
                status = False
        if debug:
            print('the objective', f(res.x))
        return res.x, status

    def get_incumbent(self, num_inc=1):
        assert (len(self.incumbent_obj) == len(self.incumbent_configs))
        indices = np.argsort(self.incumbent_obj)
        return [self.incumbent_configs[i] for i in indices[0:num_inc]], \
               [self.incumbent_obj[i] for i in indices[0: num_inc]]
Beispiel #6
0
    def __init__(self,
                 config_space,
                 objective_func,
                 R,
                 num_iter=10,
                 eta=3,
                 p=0.5,
                 n_workers=1,
                 info_type='Weighted',
                 rho_delta=0.1,
                 init_weight=None,
                 update_enable=False,
                 random_mode=True,
                 enable_rho=True,
                 scale_method=1,
                 init_rho=0.8):
        BaseFacade.__init__(self, objective_func, n_workers=n_workers)
        self.config_space = config_space
        self.p = p
        self.R = R
        self.eta = eta
        self.logeta = lambda x: log(x) / log(self.eta)
        self.s_max = int(self.logeta(self.R))
        self.B = (self.s_max + 1) * self.R
        self.num_iter = num_iter
        self.info_type = info_type
        self.update_enable = update_enable
        self.random_mode = random_mode

        self.enable_rho = enable_rho
        self.rho = init_rho
        self.rho_delta = rho_delta
        self.min_rho = 0.5
        self.scale_method = scale_method
        self.weight_update_id = 0

        if init_weight is None:
            init_weight = [1. / (self.s_max + 1)] * (self.s_max + 1)
        self.logger.info("initial confidence weight %s" %
                         init_weight[:self.s_max + 1])
        types, bounds = get_types(config_space)
        self.num_config = len(bounds)
        self.surrogate = RandomForestWithInstances(types=types, bounds=bounds)
        self.acquisition_func = EI(model=self.surrogate)
        self.acq_optimizer = RandomSampling(self.acquisition_func,
                                            config_space,
                                            n_samples=max(
                                                500, 50 * self.num_config))

        if info_type == 'Weighted':
            self.weighted_surrogate = WeightedRandomForestCluster(
                types, bounds, self.s_max, self.eta, init_weight, 'lc')
            self.weighted_acquisition_func = EI(model=self.weighted_surrogate)
            self.weighted_acq_optimizer = RandomSampling(
                self.weighted_acquisition_func,
                config_space,
                n_samples=max(500, 50 * self.num_config))

        self.incumbent_configs = []
        self.incumbent_obj = []
        self.init_tradeoff = 0.5
        self.tradeoff_dec_rate = 0.8
        self.iterate_id = 0
        self.iterate_r = []
        self.hist_weights = list()

        self.target_x = dict()
        self.target_y = dict()
        for index, item in enumerate(
                np.logspace(0, self.s_max, self.s_max + 1, base=self.eta)):
            r = int(item)
            self.iterate_r.append(r)
            self.target_x[r] = []
            self.target_y[r] = []
Beispiel #7
0
class XFHB(BaseFacade):
    def __init__(self,
                 config_space,
                 objective_func,
                 R,
                 num_iter=10,
                 eta=3,
                 p=0.5,
                 n_workers=1,
                 info_type='Weighted',
                 rho_delta=0.1,
                 init_weight=None,
                 update_enable=False,
                 random_mode=True,
                 enable_rho=True,
                 scale_method=1,
                 init_rho=0.8):
        BaseFacade.__init__(self, objective_func, n_workers=n_workers)
        self.config_space = config_space
        self.p = p
        self.R = R
        self.eta = eta
        self.logeta = lambda x: log(x) / log(self.eta)
        self.s_max = int(self.logeta(self.R))
        self.B = (self.s_max + 1) * self.R
        self.num_iter = num_iter
        self.info_type = info_type
        self.update_enable = update_enable
        self.random_mode = random_mode

        self.enable_rho = enable_rho
        self.rho = init_rho
        self.rho_delta = rho_delta
        self.min_rho = 0.5
        self.scale_method = scale_method
        self.weight_update_id = 0

        if init_weight is None:
            init_weight = [1. / (self.s_max + 1)] * (self.s_max + 1)
        self.logger.info("initial confidence weight %s" %
                         init_weight[:self.s_max + 1])
        types, bounds = get_types(config_space)
        self.num_config = len(bounds)
        self.surrogate = RandomForestWithInstances(types=types, bounds=bounds)
        self.acquisition_func = EI(model=self.surrogate)
        self.acq_optimizer = RandomSampling(self.acquisition_func,
                                            config_space,
                                            n_samples=max(
                                                500, 50 * self.num_config))

        if info_type == 'Weighted':
            self.weighted_surrogate = WeightedRandomForestCluster(
                types, bounds, self.s_max, self.eta, init_weight, 'lc')
            self.weighted_acquisition_func = EI(model=self.weighted_surrogate)
            self.weighted_acq_optimizer = RandomSampling(
                self.weighted_acquisition_func,
                config_space,
                n_samples=max(500, 50 * self.num_config))

        self.incumbent_configs = []
        self.incumbent_obj = []
        self.init_tradeoff = 0.5
        self.tradeoff_dec_rate = 0.8
        self.iterate_id = 0
        self.iterate_r = []
        self.hist_weights = list()

        self.target_x = dict()
        self.target_y = dict()
        for index, item in enumerate(
                np.logspace(0, self.s_max, self.s_max + 1, base=self.eta)):
            r = int(item)
            self.iterate_r.append(r)
            self.target_x[r] = []
            self.target_y[r] = []

    def iterate(self, skip_last=0):

        for s in reversed(range(self.s_max + 1)):

            if self.update_enable and self.weight_update_id > self.s_max:
                self.update_weight_vector()
            self.weight_update_id += 1

            # initial number of configurations
            n = int(ceil(self.B / self.R / (s + 1) * self.eta**s))
            # initial number of iterations per config
            r = int(self.R * self.eta**(-s))

            # choose a batch of configurations in different mechanisms.
            start_time = time.time()
            if self.info_type != 'Weighted':
                T = self.choose_next(n, r, self.info_type)
            else:
                T = self.choose_next_weighted(n)
            time_elapsed = time.time() - start_time
            self.logger.info("choosing next configurations took %.2f sec." %
                             time_elapsed)

            extra_info = None
            last_run_num = None

            for i in range((s + 1) - int(skip_last)):  # changed from s + 1

                # Run each of the n configs for <iterations>
                # and keep best (n_configs / eta) configurations

                n_configs = n * self.eta**(-i)
                n_iterations = r * self.eta**(i)

                n_iter = n_iterations
                if last_run_num is not None and not self.restart_needed:
                    n_iter -= last_run_num
                last_run_num = n_iterations

                self.logger.info(
                    "XFHB-%s: %d configurations x %d iterations each" %
                    (self.info_type, int(n_configs), int(n_iterations)))

                ret_val, early_stops = self.run_in_parallel(
                    T, n_iter, extra_info)
                val_losses = [item['loss'] for item in ret_val]
                ref_list = [item['ref_id'] for item in ret_val]

                self.target_x[int(n_iterations)].extend(T)
                self.target_y[int(n_iterations)].extend(val_losses)

                if int(n_iterations) == self.R:
                    self.incumbent_configs.extend(T)
                    self.incumbent_obj.extend(val_losses)
                # select a number of best configurations for the next loop
                # filter out early stops, if any
                indices = np.argsort(val_losses)
                if len(T) == sum(early_stops):
                    break
                if len(T) >= self.eta:
                    T = [T[i] for i in indices if not early_stops[i]]
                    extra_info = [
                        ref_list[i] for i in indices if not early_stops[i]
                    ]
                    reduced_num = int(n_configs / self.eta)
                    T = T[0:reduced_num]
                    extra_info = extra_info[0:reduced_num]
                else:
                    T = [T[indices[0]]]
                    extra_info = [ref_list[indices[0]]]
                incumbent_loss = val_losses[indices[0]]
                self.add_stage_history(
                    self.stage_id, min(self.global_incumbent, incumbent_loss))
                self.stage_id += 1
            self.remove_immediate_model()

            if self.info_type == 'Weighted':
                for item in self.iterate_r[self.iterate_r.index(r):]:
                    # objective value normalization: min-max linear normalization
                    normalized_y = minmax_normalization(self.target_y[item])
                    self.weighted_surrogate.train(
                        convert_configurations_to_array(self.target_x[item]),
                        np.array(normalized_y, dtype=np.float64),
                        r=item)
        # TODO: trade off value: decay (bayesian optimization did? do we need trade off e&e again?)
        self.init_tradeoff *= self.tradeoff_dec_rate

    def update_rho(self):
        if self.rho > self.min_rho:
            if self.rho - self.rho_delta < self.min_rho:
                self.rho = self.min_rho
            else:
                self.rho -= self.rho_delta

    @BaseFacade.process_manage
    def run(self):
        try:
            for iter in range(1, 1 + self.num_iter):
                self.logger.info('-' * 50)
                self.logger.info("XFHB algorithm: %d/%d iteration starts" %
                                 (iter, self.num_iter))
                start_time = time.time()
                self.iterate()
                time_elapsed = (time.time() - start_time) / 60
                self.logger.info("iteration took %.2f min." % time_elapsed)
                self.iterate_id += 1
                if self.enable_rho:
                    self.update_rho()
                self.save_intemediate_statistics()
        except Exception as e:
            print(e)
            self.logger.error(str(e))
            # clear the immediate result.
            self.remove_immediate_model()

    # TODO: how to utilize the final incmbents' data.
    # TODO: forward/backward target distribution utilization.
    def choose_next(self, num_config, r, mode):
        # different types of mode.
        if mode == 'Hybrid':
            mode = 'Backward' if self.iterate_id % 2 == 0 else 'Forward'

        if mode == 'Forward':
            if r != self.R:
                r *= self.eta
        elif mode == 'Backward':
            if r != 1:
                r /= self.eta
            else:
                r = self.R

        # TODO: in different types, this condition may not needed any more.
        n_exp = len(self.target_y[r])
        if n_exp < 2 * self.num_config:
            return sample_configurations(self.config_space, num_config)

        self.logger.info('train feature is: %s' % str(self.target_x[r]))
        self.logger.info('train target is: %s' % str(self.target_y[r]))

        self.surrogate.train(convert_configurations_to_array(self.target_x[r]),
                             np.array(self.target_y[r], dtype=np.float64))

        conf_cnt = 0
        next_configs = []
        total_cnt = 0
        # TODO: acceleration, maximize a batch of candidates.
        while conf_cnt < num_config and total_cnt < 5 * num_config:
            rand_config = None
            if random.uniform(0, 1) < self.init_tradeoff:
                rand_config = self.config_space.sample_configuration(1)
            else:
                # print('use surrogate to produce candidate.')
                incumbent = dict()
                incumbent['obj'] = np.min(self.target_y[r])
                incumbent['config'] = self.target_x[r][np.argmin(
                    self.target_y[r])]

                self.acquisition_func.update(model=self.surrogate,
                                             eta=incumbent)
                rand_config = self.acq_optimizer.maximize(batch_size=1)[0]
            if rand_config not in next_configs:
                next_configs.append(rand_config)
                conf_cnt += 1
            total_cnt += 1

        if conf_cnt < num_config:
            next_configs = expand_configurations(next_configs,
                                                 self.config_space, num_config)

        return next_configs

    def choose_next_weighted(self, num_config):
        if len(self.target_y[self.iterate_r[-1]]) == 0:
            return sample_configurations(self.config_space, num_config)

        conf_cnt = 0
        next_configs = []
        total_cnt = 0

        while conf_cnt < num_config and total_cnt < 2 * num_config:
            # in Bayesian optimization, eliminate epsilon sampling.
            incumbent = dict()
            # TODO: problem-->use the best in maximal resource.
            # TODO: smac's optmization algorithm.
            max_r = self.iterate_r[-1]
            best_index = np.argmin(self.target_y[max_r])
            incumbent['config'] = self.target_x[max_r][best_index]
            approximate_obj = self.weighted_surrogate.predict(
                convert_configurations_to_array([incumbent['config']]))[0]
            incumbent['obj'] = approximate_obj

            self.weighted_acquisition_func.update(
                model=self.weighted_surrogate, eta=incumbent)
            rand_config = self.weighted_acq_optimizer.maximize(batch_size=1)[0]

            if rand_config not in next_configs:
                next_configs.append(rand_config)
                conf_cnt += 1
            total_cnt += 1

        if conf_cnt < num_config:
            next_configs = expand_configurations(next_configs,
                                                 self.config_space, num_config)
        return next_configs

    def update_weight_vector(self):
        rho = self.rho
        max_r = self.iterate_r[-1]
        incumbent_configs = self.target_x[max_r]
        test_x = convert_configurations_to_array(incumbent_configs)
        test_y = minmax_normalization(self.target_y[max_r])

        r_list = self.weighted_surrogate.surrogate_r
        cur_confidence = self.weighted_surrogate.surrogate_weight
        curr_list = [cur_confidence[r] for r in r_list[:-1]]

        # calculate correlation coefficient.
        corrcoef_list = []
        for i, r in enumerate(r_list):
            mean, _ = self.weighted_surrogate.surrogate_container[r].predict(
                test_x)
            tmp_y = np.reshape(mean, -1)
            # corrcoef = np.corrcoef(np.vstack((test_y, tmp_y)))[0][1]/2 + 0.5
            corrcoef = max(0, np.corrcoef(np.vstack((test_y, tmp_y)))[0][1])
            corrcoef_list.append(corrcoef)
        corrcoef_list = np.array(corrcoef_list)
        self.logger.info('scale method %d, before normalization: %s' %
                         (self.scale_method, str(corrcoef_list)))

        if self.scale_method <= 4:
            corrcoef_list = corrcoef_list**self.scale_method / sum(
                corrcoef_list**self.scale_method)
        elif self.scale_method == 6:
            corrcoef_list = corrcoef_list**2 / sum(corrcoef_list**2)
        elif self.scale_method == 7:
            ref = corrcoef_list**2
            follow_list = (corrcoef_list != max(corrcoef_list)) * ref
            corrcoef_list = follow_list / sum(follow_list) * 0.5 + (
                corrcoef_list == max(corrcoef_list)) * 0.5

        self.logger.info('after normalization: %s' % str(corrcoef_list))

        if sum(np.isnan(corrcoef_list)) == len(corrcoef_list):
            corrcoef_list = [item for item in curr_list]
            self.logger.info('escape nan, current update', corrcoef_list)

        assert len(cur_confidence) == len(corrcoef_list)
        self.logger.info('cur rho %.3f; conf vector/update vector: %s/%s' %
                         (self.rho, str(cur_confidence), str(corrcoef_list)))

        updated_weights = list()
        for i, r in enumerate(r_list):
            if self.scale_method == 7:
                self.weighted_surrogate.surrogate_weight[r] = corrcoef_list[i]
            else:
                self.weighted_surrogate.surrogate_weight[
                    r] = corrcoef_list[i] * (1 - rho) + rho * cur_confidence[r]
            updated_weights.append(self.weighted_surrogate.surrogate_weight[r])
            print('update surrogate weight:', r,
                  self.weighted_surrogate.surrogate_weight[r])
            self.logger.info('update surrogate weight:%d-%.4f' %
                             (r, self.weighted_surrogate.surrogate_weight[r]))
        self.hist_weights.append(updated_weights)
        np.save('data/tmp_weights_%s.npy' % self.method_name,
                np.asarray(self.hist_weights))

    def get_incumbent(self, num_inc=1):
        assert (len(self.incumbent_obj) == len(self.incumbent_configs))
        indices = np.argsort(self.incumbent_obj)
        return [self.incumbent_configs[i] for i in indices[0:num_inc]], \
               [self.incumbent_obj[i] for i in indices[0: num_inc]]

    def get_weights(self):
        return self.hist_weights
Beispiel #8
0
class SMAC(BaseFacade):
    def __init__(self,
                 config_space,
                 objective_func,
                 R,
                 num_iter=10,
                 n_workers=1,
                 eta=3,
                 random_state=1,
                 method_id="Default"):
        BaseFacade.__init__(self,
                            objective_func,
                            n_workers=n_workers,
                            method_name=method_id)
        self.config_space = config_space
        self.seed = random_state
        self.config_space.seed(self.seed)
        self.R = R
        self.num_iter = num_iter
        self.eta = eta
        self.logeta = lambda x: log(x) / log(self.eta)
        self.s_max = int(self.logeta(R))
        self.inner_iteration_n = (self.s_max + 1) * (self.s_max + 1)

        types, bounds = get_types(config_space)
        self.num_config = len(bounds)
        self.surrogate = RandomForestWithInstances(types=types, bounds=bounds)
        self.acquisition_func = EI(model=self.surrogate)
        # TODO: add SMAC's optimization algorithm.
        self.acq_optimizer = RandomSampling(self.acquisition_func,
                                            config_space,
                                            n_samples=max(
                                                500, 50 * self.num_config))

        self.incumbent_configs = []
        self.incumbent_obj = []
        self.p = 0.3

    def iterate(self):
        n_loop = int(ceil(1.0 * self.inner_iteration_n / self.num_workers))
        for _ in range(n_loop):
            T = self.choose_next(self.num_workers)
            extra_info = None

            ret_val, early_stops = self.run_in_parallel(T, self.R, extra_info)
            val_losses = [item['loss'] for item in ret_val]
            self.incumbent_configs.extend(T)
            self.incumbent_obj.extend(val_losses)
            self.add_stage_history(self.stage_id, self.global_incumbent)
            self.stage_id += 1
            self.remove_immediate_model()

    @BaseFacade.process_manage
    def run(self):
        try:
            for iter in range(self.num_iter):
                self.logger.info('-' * 50)
                self.logger.info("SMAC algorithm: %d/%d iteration starts" %
                                 (iter, self.num_iter))
                start_time = time.time()
                self.iterate()
                time_elapsed = (time.time() - start_time) / 60
                self.logger.info("iteration took %.2f min." % time_elapsed)
                self.save_intemediate_statistics()
        except Exception as e:
            print(e)
            self.logger.error(str(e))
            # clear the immediate result.
            self.remove_immediate_model()

    def choose_next(self, num_config):
        if len(self.incumbent_obj) < 3:
            return sample_configurations(self.config_space, num_config)

        self.logger.info('BO Training - X: %s' %
                         str(self.incumbent_configs[-5:]))
        self.logger.info('BO Training - Y: %s' % str(self.incumbent_obj))
        self.surrogate.train(
            convert_configurations_to_array(self.incumbent_configs),
            np.array(self.incumbent_obj, dtype=np.float64))

        conf_cnt = 0
        total_cnt = 0
        _next_configs = []
        while conf_cnt < num_config and total_cnt < 5 * num_config:
            incumbent = dict()
            best_index = np.argmin(self.incumbent_obj)
            incumbent['obj'] = self.incumbent_obj[best_index]
            incumbent['config'] = self.incumbent_configs[best_index]

            self.acquisition_func.update(model=self.surrogate, eta=incumbent)
            rand_config = self.acq_optimizer.maximize(batch_size=1)[0]
            if rand_config not in _next_configs:
                _next_configs.append(rand_config)
                conf_cnt += 1
            total_cnt += 1
        if conf_cnt < num_config:
            _next_configs = expand_configurations(_next_configs,
                                                  self.config_space,
                                                  num_config)

        next_configs = []

        # Epsilon greedy
        for config in _next_configs:
            if random.random() < self.p:
                next_configs.append(
                    sample_configurations(self.config_space, 1)[0])
            else:
                next_configs.append(config)

        return next_configs

    def get_incumbent(self, num_inc=1):
        assert (len(self.incumbent_obj) == len(self.incumbent_configs))
        indices = np.argsort(self.incumbent_obj)
        configs = [self.incumbent_configs[i] for i in indices[0:num_inc]]
        targets = [self.incumbent_obj[i] for i in indices[0:num_inc]]
        return configs, targets
Beispiel #9
0
    def __init__(self,
                 config_space: ConfigurationSpace,
                 objective_func,
                 R,
                 num_iter=10000,
                 eta=3,
                 n_workers=1,
                 random_state=1,
                 init_weight=None,
                 update_enable=True,
                 weight_method='rank_loss_p_norm',
                 fusion_method='gpoe',
                 power_num=2,
                 method_id='Default'):
        BaseFacade.__init__(self,
                            objective_func,
                            n_workers=n_workers,
                            method_name=method_id)
        self.config_space = config_space
        self.R = R
        self.eta = eta
        self.seed = random_state
        self.logeta = lambda x: log(x) / log(self.eta)
        self.s_max = int(self.logeta(self.R))
        self.B = (self.s_max + 1) * self.R
        self.num_iter = num_iter
        self.update_enable = update_enable
        self.fusion_method = fusion_method
        # Parameter for weight method `rank_loss_p_norm`.
        self.power_num = power_num
        # Specify the weight learning method.
        self.weight_method = weight_method
        self.config_space.seed(self.seed)
        self.weight_update_id = 0
        self.weight_changed_cnt = 0

        if init_weight is None:
            init_weight = [0.]
            init_weight.extend([1. / self.s_max] * self.s_max)
        assert len(init_weight) == (self.s_max + 1)
        if self.weight_method == 'equal_weight':
            assert self.update_enable is False
        self.logger.info('Weight method & flag: %s-%s' %
                         (self.weight_method, str(self.update_enable)))
        self.logger.info("Initial weight is: %s" %
                         init_weight[:self.s_max + 1])
        types, bounds = get_types(config_space)
        self.num_config = len(bounds)

        self.weighted_surrogate = WeightedRandomForestCluster(
            types, bounds, self.s_max, self.eta, init_weight,
            self.fusion_method)
        self.acquisition_function = EI(model=self.weighted_surrogate)

        self.incumbent_configs = []
        self.incumbent_perfs = []

        self.iterate_id = 0
        self.iterate_r = []
        self.hist_weights = list()

        # Saving evaluation statistics in Hyperband.
        self.target_x = dict()
        self.target_y = dict()
        for index, item in enumerate(
                np.logspace(0, self.s_max, self.s_max + 1, base=self.eta)):
            r = int(item)
            self.iterate_r.append(r)
            self.target_x[r] = []
            self.target_y[r] = []

        # BO optimizer settings.
        self.configs = list()
        self.history_container = HistoryContainer('mfse-container')
        self.sls_max_steps = None
        self.n_sls_iterations = 5
        self.sls_n_steps_plateau_walk = 10
        rng = np.random.RandomState(seed=random_state)
        self.acq_optimizer = InterleavedLocalAndRandomSearch(
            acquisition_function=self.acquisition_function,
            config_space=self.config_space,
            rng=rng,
            max_steps=self.sls_max_steps,
            n_steps_plateau_walk=self.sls_n_steps_plateau_walk,
            n_sls_iterations=self.n_sls_iterations)
        self._random_search = RandomSearch(self.acquisition_function,
                                           self.config_space,
                                           rng=rng)
        self.random_configuration_chooser = ChooserProb(prob=0.2, rng=rng)
Beispiel #10
0
class MFSE(BaseFacade):
    def __init__(self,
                 config_space: ConfigurationSpace,
                 objective_func,
                 R,
                 num_iter=10000,
                 eta=3,
                 n_workers=1,
                 random_state=1,
                 init_weight=None,
                 update_enable=True,
                 weight_method='rank_loss_p_norm',
                 fusion_method='gpoe',
                 power_num=2,
                 method_id='Default'):
        BaseFacade.__init__(self,
                            objective_func,
                            n_workers=n_workers,
                            method_name=method_id)
        self.config_space = config_space
        self.R = R
        self.eta = eta
        self.seed = random_state
        self.logeta = lambda x: log(x) / log(self.eta)
        self.s_max = int(self.logeta(self.R))
        self.B = (self.s_max + 1) * self.R
        self.num_iter = num_iter
        self.update_enable = update_enable
        self.fusion_method = fusion_method
        # Parameter for weight method `rank_loss_p_norm`.
        self.power_num = power_num
        # Specify the weight learning method.
        self.weight_method = weight_method
        self.config_space.seed(self.seed)
        self.weight_update_id = 0
        self.weight_changed_cnt = 0

        if init_weight is None:
            init_weight = [0.]
            init_weight.extend([1. / self.s_max] * self.s_max)
        assert len(init_weight) == (self.s_max + 1)
        if self.weight_method == 'equal_weight':
            assert self.update_enable is False
        self.logger.info('Weight method & flag: %s-%s' %
                         (self.weight_method, str(self.update_enable)))
        self.logger.info("Initial weight is: %s" %
                         init_weight[:self.s_max + 1])
        types, bounds = get_types(config_space)
        self.num_config = len(bounds)

        self.weighted_surrogate = WeightedRandomForestCluster(
            types, bounds, self.s_max, self.eta, init_weight,
            self.fusion_method)
        self.acquisition_function = EI(model=self.weighted_surrogate)

        self.incumbent_configs = []
        self.incumbent_perfs = []

        self.iterate_id = 0
        self.iterate_r = []
        self.hist_weights = list()

        # Saving evaluation statistics in Hyperband.
        self.target_x = dict()
        self.target_y = dict()
        for index, item in enumerate(
                np.logspace(0, self.s_max, self.s_max + 1, base=self.eta)):
            r = int(item)
            self.iterate_r.append(r)
            self.target_x[r] = []
            self.target_y[r] = []

        # BO optimizer settings.
        self.configs = list()
        self.history_container = HistoryContainer('mfse-container')
        self.sls_max_steps = None
        self.n_sls_iterations = 5
        self.sls_n_steps_plateau_walk = 10
        rng = np.random.RandomState(seed=random_state)
        self.acq_optimizer = InterleavedLocalAndRandomSearch(
            acquisition_function=self.acquisition_function,
            config_space=self.config_space,
            rng=rng,
            max_steps=self.sls_max_steps,
            n_steps_plateau_walk=self.sls_n_steps_plateau_walk,
            n_sls_iterations=self.n_sls_iterations)
        self._random_search = RandomSearch(self.acquisition_function,
                                           self.config_space,
                                           rng=rng)
        self.random_configuration_chooser = ChooserProb(prob=0.2, rng=rng)

    def iterate(self, skip_last=0):

        for s in reversed(range(self.s_max + 1)):

            if self.update_enable and self.weight_update_id > self.s_max:
                self.update_weight()
            self.weight_update_id += 1

            # Set initial number of configurations
            n = int(ceil(self.B / self.R / (s + 1) * self.eta**s))
            # initial number of iterations per config
            r = int(self.R * self.eta**(-s))

            # Choose a batch of configurations in different mechanisms.
            start_time = time.time()
            T = self.choose_next_batch(n)
            time_elapsed = time.time() - start_time
            self.logger.info(
                "[%s] Choosing next configurations took %.2f sec." %
                (self.method_name, time_elapsed))

            extra_info = None
            last_run_num = None

            for i in range((s + 1) - int(skip_last)):  # changed from s + 1

                # Run each of the n configs for <iterations>
                # and keep best (n_configs / eta) configurations

                n_configs = n * self.eta**(-i)
                n_iterations = r * self.eta**(i)

                n_iter = n_iterations
                if last_run_num is not None and not self.restart_needed:
                    n_iter -= last_run_num
                last_run_num = n_iterations

                self.logger.info(
                    "MFSE: %d configurations x %d iterations each" %
                    (int(n_configs), int(n_iterations)))

                ret_val, early_stops = self.run_in_parallel(
                    T, n_iter, extra_info)
                val_losses = [item['loss'] for item in ret_val]
                ref_list = [item['ref_id'] for item in ret_val]

                self.target_x[int(n_iterations)].extend(T)
                self.target_y[int(n_iterations)].extend(val_losses)

                if int(n_iterations) == self.R:
                    self.incumbent_configs.extend(T)
                    self.incumbent_perfs.extend(val_losses)
                    # Update history container.
                    for _config, _perf in zip(T, val_losses):
                        self.history_container.add(_config, _perf)

                # Select a number of best configurations for the next loop.
                # Filter out early stops, if any.
                indices = np.argsort(val_losses)
                if len(T) == sum(early_stops):
                    break
                if len(T) >= self.eta:
                    T = [T[i] for i in indices if not early_stops[i]]
                    extra_info = [
                        ref_list[i] for i in indices if not early_stops[i]
                    ]
                    reduced_num = int(n_configs / self.eta)
                    T = T[0:reduced_num]
                    extra_info = extra_info[0:reduced_num]
                else:
                    T = [T[indices[0]]]
                    extra_info = [ref_list[indices[0]]]
                incumbent_loss = val_losses[indices[0]]
                self.add_stage_history(
                    self.stage_id, min(self.global_incumbent, incumbent_loss))
                self.stage_id += 1
            self.remove_immediate_model()

            for item in self.iterate_r[self.iterate_r.index(r):]:
                # NORMALIZE Objective value: normalization
                normalized_y = std_normalization(self.target_y[item])
                self.weighted_surrogate.train(convert_configurations_to_array(
                    self.target_x[item]),
                                              np.array(normalized_y,
                                                       dtype=np.float64),
                                              r=item)

    @BaseFacade.process_manage
    def run(self):
        try:
            for iter in range(1, 1 + self.num_iter):
                self.logger.info('-' * 50)
                self.logger.info("MFSE algorithm: %d/%d iteration starts" %
                                 (iter, self.num_iter))
                start_time = time.time()
                self.iterate()
                time_elapsed = (time.time() - start_time) / 60
                self.logger.info("%d/%d-Iteration took %.2f min." %
                                 (iter, self.num_iter, time_elapsed))
                self.iterate_id += 1
                self.save_intemediate_statistics()
        except Exception as e:
            print(e)
            self.logger.error(str(e))
            # clear the immediate result.
            self.remove_immediate_model()

    def get_bo_candidates(self, num_configs):
        incumbent = dict()
        incumbent_value = np.min(
            std_normalization(self.target_y[self.iterate_r[-1]]))
        incumbent['config'] = self.history_container.get_incumbents()[0][1]
        incumbent['obj'] = incumbent_value
        print('Current inc', incumbent)
        # incumbent_value = self.history_container.get_incumbents()[0][1]
        # Update surrogate model in acquisition function.
        self.acquisition_function.update(model=self.weighted_surrogate,
                                         eta=incumbent,
                                         num_data=len(
                                             self.history_container.data))

        challengers = self.acq_optimizer.maximize(
            runhistory=self.history_container,
            num_points=5000,
            random_configuration_chooser=self.random_configuration_chooser)
        return challengers.challengers[:num_configs]

    def choose_next_batch(self, num_config):
        if len(self.target_y[self.iterate_r[-1]]) == 0:
            configs = [self.config_space.sample_configuration()]
            configs.extend(
                sample_configurations(self.config_space, num_config - 1))
            self.configs.extend(configs)
            return configs

        config_candidates = list()
        acq_configs = self.get_bo_candidates(num_configs=2 * num_config)
        acq_idx = 0
        for idx in range(1, 1 + 2 * num_config):
            # Like BOHB, sample a fixed percentage of random configurations.
            if self.random_configuration_chooser.check(idx):
                _config = self.config_space.sample_configuration()
            else:
                _config = acq_configs[acq_idx]
                acq_idx += 1
            if _config not in config_candidates:
                config_candidates.append(_config)
            if len(config_candidates) >= num_config:
                break

        if len(config_candidates) < num_config:
            config_candidates = expand_configurations(config_candidates,
                                                      self.config_space,
                                                      num_config)

        _config_candidates = []
        for config in config_candidates:
            if config not in self.configs:  # Check if evaluated
                _config_candidates.append(config)
        self.configs.extend(_config_candidates)
        return _config_candidates

    @staticmethod
    def calculate_ranking_loss(y_pred, y_true):
        length = len(y_pred)
        y_pred = np.reshape(y_pred, -1)
        y_pred1 = np.tile(y_pred, (length, 1))
        y_pred2 = np.transpose(y_pred1)
        diff = y_pred1 - y_pred2
        y_true = np.reshape(y_true, -1)
        y_true1 = np.tile(y_true, (length, 1))
        y_true2 = np.transpose(y_true1)
        y_mask = (y_true1 - y_true2 > 0) + 0
        loss = np.sum(np.log(1 + np.exp(-diff)) * y_mask) / length
        return loss

    @staticmethod
    def calculate_preserving_order_num(y_pred, y_true):
        array_size = len(y_pred)
        assert len(y_true) == array_size

        total_pair_num, order_preserving_num = 0, 0
        for idx in range(array_size):
            for inner_idx in range(idx + 1, array_size):
                if bool(y_true[idx] > y_true[inner_idx]) == bool(
                        y_pred[idx] > y_pred[inner_idx]):
                    order_preserving_num += 1
                total_pair_num += 1
        return order_preserving_num, total_pair_num

    def update_weight(self):
        max_r = self.iterate_r[-1]
        incumbent_configs = self.target_x[max_r]
        test_x = convert_configurations_to_array(incumbent_configs)
        test_y = np.array(self.target_y[max_r], dtype=np.float64)

        r_list = self.weighted_surrogate.surrogate_r
        K = len(r_list)

        if len(test_y) >= 3:
            # Get previous weights
            if self.weight_method in [
                    'rank_loss_softmax', 'rank_loss_single', 'rank_loss_p_norm'
            ]:
                preserving_order_p = list()
                preserving_order_nums = list()
                for i, r in enumerate(r_list):
                    fold_num = 5
                    if i != K - 1:
                        mean, var = self.weighted_surrogate.surrogate_container[
                            r].predict(test_x)
                        tmp_y = np.reshape(mean, -1)
                        preorder_num, pair_num = MFSE.calculate_preserving_order_num(
                            tmp_y, test_y)
                        preserving_order_p.append(preorder_num / pair_num)
                        preserving_order_nums.append(preorder_num)
                    else:
                        if len(test_y) < 2 * fold_num:
                            preserving_order_p.append(0)
                        else:
                            # 5-fold cross validation.
                            kfold = KFold(n_splits=fold_num)
                            cv_pred = np.array([0] * len(test_y))
                            for train_idx, valid_idx in kfold.split(test_x):
                                train_configs, train_y = test_x[
                                    train_idx], test_y[train_idx]
                                valid_configs, valid_y = test_x[
                                    valid_idx], test_y[valid_idx]
                                types, bounds = get_types(self.config_space)
                                _surrogate = RandomForestWithInstances(
                                    types=types, bounds=bounds)
                                _surrogate.train(train_configs, train_y)
                                pred, _ = _surrogate.predict(valid_configs)
                                cv_pred[valid_idx] = pred.reshape(-1)
                            preorder_num, pair_num = MFSE.calculate_preserving_order_num(
                                cv_pred, test_y)
                            preserving_order_p.append(preorder_num / pair_num)
                            preserving_order_nums.append(preorder_num)

                if self.weight_method == 'rank_loss_softmax':
                    order_weight = np.array(np.sqrt(preserving_order_nums))
                    trans_order_weight = order_weight - np.max(order_weight)
                    # Softmax mapping.
                    new_weights = np.exp(trans_order_weight) / sum(
                        np.exp(trans_order_weight))
                elif self.weight_method == 'rank_loss_p_norm':
                    trans_order_weight = np.array(preserving_order_p)
                    power_sum = np.sum(
                        np.power(trans_order_weight, self.power_num))
                    new_weights = np.power(trans_order_weight,
                                           self.power_num) / power_sum
                else:
                    _idx = np.argmax(np.array(preserving_order_nums))
                    new_weights = [0.] * K
                    new_weights[_idx] = 1.
            elif self.weight_method == 'rank_loss_prob':
                # For basic surrogate i=1:K-1.
                mean_list, var_list = list(), list()
                for i, r in enumerate(r_list[:-1]):
                    mean, var = self.weighted_surrogate.surrogate_container[
                        r].predict(test_x)
                    mean_list.append(np.reshape(mean, -1))
                    var_list.append(np.reshape(var, -1))
                sample_num = 100
                min_probability_array = [0] * K
                for _ in range(sample_num):
                    order_preseving_nums = list()

                    # For basic surrogate i=1:K-1.
                    for idx in range(K - 1):
                        sampled_y = np.random.normal(mean_list[idx],
                                                     var_list[idx])
                        _num, _ = MFSE.calculate_preserving_order_num(
                            sampled_y, test_y)
                        order_preseving_nums.append(_num)

                    fold_num = 5
                    # For basic surrogate i=K. cv
                    if len(test_y) < 2 * fold_num:
                        order_preseving_nums.append(0)
                    else:
                        # 5-fold cross validation.
                        kfold = KFold(n_splits=fold_num)
                        cv_pred = np.array([0] * len(test_y))
                        for train_idx, valid_idx in kfold.split(test_x):
                            train_configs, train_y = test_x[train_idx], test_y[
                                train_idx]
                            valid_configs, valid_y = test_x[valid_idx], test_y[
                                valid_idx]
                            types, bounds = get_types(self.config_space)
                            _surrogate = RandomForestWithInstances(
                                types=types, bounds=bounds)
                            _surrogate.train(train_configs, train_y)
                            _pred, _var = _surrogate.predict(valid_configs)
                            sampled_pred = np.random.normal(
                                _pred.reshape(-1), _var.reshape(-1))
                            cv_pred[valid_idx] = sampled_pred
                        _num, _ = MFSE.calculate_preserving_order_num(
                            cv_pred, test_y)
                        order_preseving_nums.append(_num)
                    max_id = np.argmax(order_preseving_nums)
                    min_probability_array[max_id] += 1
                new_weights = np.array(min_probability_array) / sample_num

            elif self.weight_method == 'opt_based':
                mean_list, var_list = list(), list()
                for i, r in enumerate(r_list):
                    if i != K - 1:
                        mean, var = self.weighted_surrogate.surrogate_container[
                            r].predict(test_x)
                        tmp_y = np.reshape(mean, -1)
                        tmp_var = np.reshape(var, -1)
                        mean_list.append(tmp_y)
                        var_list.append(tmp_var)
                    else:
                        if len(test_y) < 8:
                            mean_list.append(np.array([0] * len(test_y)))
                            var_list.append(np.array([0] * len(test_y)))
                        else:
                            # 5-fold cross validation.
                            kfold = KFold(n_splits=5)
                            cv_pred = np.array([0] * len(test_y))
                            cv_var = np.array([0] * len(test_y))
                            for train_idx, valid_idx in kfold.split(test_x):
                                train_configs, train_y = test_x[
                                    train_idx], test_y[train_idx]
                                valid_configs, valid_y = test_x[
                                    valid_idx], test_y[valid_idx]
                                types, bounds = get_types(self.config_space)
                                _surrogate = RandomForestWithInstances(
                                    types=types, bounds=bounds)
                                _surrogate.train(train_configs, train_y)
                                pred, var = _surrogate.predict(valid_configs)
                                cv_pred[valid_idx] = pred.reshape(-1)
                                cv_var[valid_idx] = var.reshape(-1)
                            mean_list.append(cv_pred)
                            var_list.append(cv_var)
                means = np.array(mean_list)
                vars = np.array(var_list) + 1e-8

                def min_func(x):
                    x = np.reshape(np.array(x), (1, len(x)))
                    ensemble_vars = 1 / (x @ (1 / vars))
                    ensemble_means = x @ (means / vars) * ensemble_vars
                    ensemble_means = np.reshape(ensemble_means, -1)
                    self.logger.info("Loss:" + str(x))
                    return MFSE.calculate_ranking_loss(ensemble_means, test_y)

                constraints = [{
                    'type': 'eq',
                    'fun': lambda x: np.sum(x) - 1
                }, {
                    'type': 'ineq',
                    'fun': lambda x: x - 0
                }, {
                    'type': 'ineq',
                    'fun': lambda x: 1 - x
                }]
                res = minimize(min_func,
                               np.array([1e-8] * K),
                               constraints=constraints)
                new_weights = res.x
            else:
                raise ValueError('Invalid weight method: %s!' %
                                 self.weight_method)
        else:
            old_weights = list()
            for i, r in enumerate(r_list):
                _weight = self.weighted_surrogate.surrogate_weight[r]
                old_weights.append(_weight)
            new_weights = old_weights.copy()

        self.logger.info(
            '[%s] %d-th Updating weights: %s' %
            (self.weight_method, self.weight_changed_cnt, str(new_weights)))

        # Assign the weight to each basic surrogate.
        for i, r in enumerate(r_list):
            self.weighted_surrogate.surrogate_weight[r] = new_weights[i]
        self.weight_changed_cnt += 1
        # Save the weight data.
        self.hist_weights.append(new_weights)
        np.save(
            'data/%s_weights_%s.npy' % (self.method_name, self.method_name),
            np.asarray(self.hist_weights))

    def get_incumbent(self, num_inc=1):
        assert (len(self.incumbent_perfs) == len(self.incumbent_configs))
        indices = np.argsort(self.incumbent_perfs)
        return [self.incumbent_configs[i] for i in indices[0:num_inc]], \
               [self.incumbent_perfs[i] for i in indices[0: num_inc]]

    def get_weights(self):
        return self.hist_weights
Beispiel #11
0
class SMAC_ES(BaseFacade):

    def __init__(self, config_space, objective_func, R,
                 num_iter=10, n_workers=1, eta=3, es_gap=9, rho=0.7,
                 random_state=1, method_id="Default"):
        BaseFacade.__init__(self, objective_func, n_workers=n_workers, need_lc=True, method_name=method_id)
        self.seed = random_state
        self.config_space = config_space
        self.config_space.seed(self.seed)
        self.R = R
        self.num_iter = num_iter
        self.eta = eta
        self.logeta = lambda x: log(x) / log(self.eta)
        self.s_max = int(self.logeta(R))
        self.inner_iteration_n = (self.s_max + 1) * (self.s_max + 1)

        types, bounds = get_types(config_space)
        self.num_config = len(bounds)
        self.surrogate = RandomForestWithInstances(types=types, bounds=bounds)
        self.acquisition_func = EI(model=self.surrogate)
        # TODO: add SMAC's optimization algorithm.
        self.acq_optimizer = RandomSampling(self.acquisition_func, config_space,
                                            n_samples=max(500, 50 * self.num_config))

        self.incumbent_configs = []
        self.incumbent_obj = []

        self.lcnet_model = LC_ES()
        self.early_stop_gap = es_gap
        self.es_rho = rho
        self.lc_training_x = None
        self.lc_training_y = None

    def iterate(self):
        for _ in range(self.inner_iteration_n):
            T = self.choose_next(self.num_workers)

            extra_info = None
            lc_info = dict()
            lc_conf_mapping = dict()

            # assume no same configuration in the same batch: T
            for item in T:
                conf_id = get_configuration_id(item.get_dictionary())
                sha = hashlib.sha1(conf_id.encode('utf8'))
                conf_id = sha.hexdigest()
                lc_conf_mapping[conf_id] = item

            total_iter_num = self.R // self.early_stop_gap
            for iter_num in range(1, 1 + total_iter_num):
                self.logger.info('start iteration gap %d' % iter_num)
                ret_val, early_stops = self.run_in_parallel(T, self.early_stop_gap, extra_info)
                val_losses = [item['loss'] for item in ret_val]
                ref_list = [item['ref_id'] for item in ret_val]
                for item in ret_val:
                    conf_id = item['ref_id']
                    if not self.restart_needed:
                        if conf_id not in lc_info:
                            lc_info[conf_id] = []
                        lc_info[conf_id].extend(item['lc_info'])
                    else:
                        lc_info[conf_id] = item['lc_info']

                if iter_num == total_iter_num:
                    self.incumbent_configs.extend(T)
                    self.incumbent_obj.extend(val_losses)

                T = [config for i, config in enumerate(T) if not early_stops[i]]
                extra_info = [ref for i, ref in enumerate(ref_list) if not early_stops[i]]
                if len(T) == 0:
                    break

                if len(self.incumbent_obj) >= 2 * self.num_config and iter_num != total_iter_num:
                    # learning curve based early stop strategy.
                    ref_list = extra_info
                    early_stops = self.stop_early(T)
                    T = [config for i, config in enumerate(T) if not early_stops[i]]
                    extra_info = [ref for i, ref in enumerate(ref_list) if not early_stops[i]]
                if len(T) == 0:
                    break

            # keep learning curve data
            for item, config in lc_conf_mapping.items():
                lc_data = lc_info[item]
                if len(lc_data) > 0:
                    n_epochs = len(lc_data)
                    # self.logger.info('insert one learning curve data into dataset.')
                    t_idx = np.arange(1, n_epochs + 1) / n_epochs
                    conf_data = convert_configurations_to_array([config])
                    x = np.repeat(conf_data, t_idx.shape[0], axis=0)
                    x = np.concatenate((x, t_idx[:, None]), axis=1)
                    y = np.array(lc_data)
                    if self.lc_training_x is None:
                        self.lc_training_x, self.lc_training_y = x, y
                    else:
                        self.lc_training_x = np.concatenate((self.lc_training_x, x), 0)
                        self.lc_training_y = np.concatenate((self.lc_training_y, y), 0)
            self.logger.info('training data shape: %s' % str(self.lc_training_x.shape))
            if len(self.incumbent_obj) >= 2 * self.num_config and len(self.incumbent_obj) % self.num_config == 0:
                self.lcnet_model.train(self.lc_training_x, self.lc_training_y)

            self.add_stage_history(self.stage_id, self.global_incumbent)
            self.stage_id += 1
            self.remove_immediate_model()

    @BaseFacade.process_manage
    def run(self):
        try:
            for iter in range(self.num_iter):
                self.logger.info('-' * 50)
                self.logger.info("SMAC with ES algorithm: %d/%d iteration starts" % (iter, self.num_iter))
                start_time = time.time()
                self.iterate()
                time_elapsed = (time.time() - start_time) / 60
                self.logger.info("iteration took %.2f min." % time_elapsed)
                self.save_intemediate_statistics()
        except Exception as e:
            print(e)
            self.logger.error(str(e))
            # clear the immediate result.
            self.remove_immediate_model()

    def stop_early(self, T):
        configs_data = convert_configurations_to_array(T)
        x_test = None
        for i in range(configs_data.shape[0]):
            x = np.concatenate((configs_data[i, None, :], np.array([[1.0]])), axis=1)
            if x_test is None:
                x_test = x
            else:
                x_test = np.concatenate((x_test, x), 0)

        m, v = self.lcnet_model.predict(x_test)
        best_accuracy = 1 - self.global_incumbent
        s = np.sqrt(v)
        less_p = norm.cdf((best_accuracy - m) / s)
        self.logger.info('early stop prob: %s' % str(less_p))
        early_stop_flag = (less_p >= self.es_rho)

        self.logger.info('early stop vector: %s' % str(early_stop_flag))

        for i, flag in enumerate(early_stop_flag):
            if flag:
                self.incumbent_configs.append(T[i])
                self.incumbent_obj.append(m[i])
        return early_stop_flag

    def choose_next(self, num_config):
        if len(self.incumbent_obj) < 2 * self.num_config:
            return sample_configurations(self.config_space, num_config)

        # print('choose next starts!')
        self.logger.info('train feature is: %s' % str(self.incumbent_configs[-5:]))
        self.logger.info('train target is: %s' % str(self.incumbent_obj))

        self.surrogate.train(convert_configurations_to_array(self.incumbent_configs),
                             np.array(self.incumbent_obj, dtype=np.float64))

        conf_cnt = 0
        total_cnt = 0
        next_configs = []
        while conf_cnt < num_config and total_cnt < 5 * num_config:
            incumbent = dict()
            best_index = np.argmin(self.incumbent_obj)
            incumbent['obj'] = self.incumbent_obj[best_index]
            incumbent['config'] = self.incumbent_configs[best_index]

            self.acquisition_func.update(model=self.surrogate, eta=incumbent)
            rand_config = self.acq_optimizer.maximize(batch_size=1)[0]
            if rand_config not in next_configs:
                next_configs.append(rand_config)
                conf_cnt += 1
            total_cnt += 1
        if conf_cnt < num_config:
            next_configs = expand_configurations(next_configs, self.config_space, num_config)
        return next_configs

    def get_incumbent(self, num_inc=1):
        assert (len(self.incumbent_obj) == len(self.incumbent_configs))
        indices = np.argsort(self.incumbent_obj)
        configs = [self.incumbent_configs[i] for i in indices[0:num_inc]]
        targets = [self.incumbent_obj[i] for i in indices[0: num_inc]]
        return configs, targets
Beispiel #12
0
class BOHB(BaseFacade):
    """ The implementation of BOHB.
        The paper can be found in https://arxiv.org/abs/1807.01774 .
    """
    def __init__(self,
                 config_space: ConfigurationSpace,
                 objective_func,
                 R,
                 num_iter=10000,
                 eta=3,
                 p=0.3,
                 n_workers=1,
                 random_state=1,
                 method_id='Default'):
        BaseFacade.__init__(self,
                            objective_func,
                            n_workers=n_workers,
                            method_name=method_id)
        self.config_space = config_space
        self.seed = random_state
        self.config_space.seed(self.seed)
        self.p = p
        self.R = R
        self.eta = eta
        self.logeta = lambda x: log(x) / log(self.eta)
        self.s_max = int(self.logeta(self.R))
        self.B = (self.s_max + 1) * self.R
        self.num_iter = num_iter

        types, bounds = get_types(config_space)
        self.num_config = len(bounds)
        self.surrogate = RandomForestWithInstances(types=types, bounds=bounds)
        self.acquisition_func = EI(model=self.surrogate)
        self.acq_optimizer = RandomSampling(self.acquisition_func,
                                            config_space,
                                            n_samples=max(
                                                500, 50 * self.num_config))

        self.incumbent_configs = []
        self.incumbent_obj = []

    def iterate(self, skip_last=0):

        for s in reversed(range(self.s_max + 1)):
            # Set initial number of configurations
            n = int(ceil(self.B / self.R / (s + 1) * self.eta**s))
            # Set initial number of iterations per config
            r = self.R * self.eta**(-s)

            # Sample n configurations according to BOHB strategy.
            T = self.choose_next(n)
            extra_info = None
            last_run_num = None
            for i in range((s + 1) - int(skip_last)):  # changed from s + 1
                # Run each of the n configs for <iterations>
                # and keep best (n_configs / eta) configurations.

                n_configs = n * self.eta**(-i)
                n_iterations = r * self.eta**(i)

                n_iter = n_iterations
                if last_run_num is not None and not self.restart_needed:
                    n_iter -= last_run_num
                last_run_num = n_iterations

                self.logger.info(
                    "BOHB: %d configurations x %d iterations each" %
                    (int(n_configs), int(n_iterations)))

                ret_val, early_stops = self.run_in_parallel(
                    T, n_iter, extra_info)
                val_losses = [item['loss'] for item in ret_val]
                ref_list = [item['ref_id'] for item in ret_val]

                if int(n_iterations) == self.R:
                    self.incumbent_configs.extend(T)
                    self.incumbent_obj.extend(val_losses)

                # Select a number of best configurations for the next loop.
                # Filter out early stops, if any.
                indices = np.argsort(val_losses)
                if len(T) == sum(early_stops):
                    break
                if len(T) >= self.eta:
                    T = [T[i] for i in indices if not early_stops[i]]
                    extra_info = [
                        ref_list[i] for i in indices if not early_stops[i]
                    ]
                    reduced_num = int(n_configs / self.eta)
                    T = T[0:reduced_num]
                    extra_info = extra_info[0:reduced_num]
                else:
                    T = [T[indices[0]]]
                    extra_info = [ref_list[indices[0]]]
                incumbent_loss = val_losses[indices[0]]
                self.add_stage_history(
                    self.stage_id, min(self.global_incumbent, incumbent_loss))
                self.stage_id += 1
            self.remove_immediate_model()

    @BaseFacade.process_manage
    def run(self):
        try:
            for iter in range(self.num_iter):
                self.logger.info('-' * 50)
                self.logger.info("BOHB algorithm: %d/%d iteration starts" %
                                 (iter, self.num_iter))
                start_time = time.time()
                self.iterate()
                time_elapsed = (time.time() - start_time) / 60
                self.logger.info("Iteration took %.2f min." % time_elapsed)
                self.save_intemediate_statistics()
        except Exception as e:
            print(e)
            self.logger.error(str(e))
            # Clean the immediate result.
            self.remove_immediate_model()

    def choose_next(self, num_config):
        if len(self.incumbent_obj) < 3:
            return sample_configurations(self.config_space, num_config)

        self.logger.info('Train feature is: %s' %
                         str(self.incumbent_configs[:5]))
        self.logger.info('Train target is: %s' % str(self.incumbent_obj))
        self.surrogate.train(
            convert_configurations_to_array(self.incumbent_configs),
            np.array(self.incumbent_obj, dtype=np.float64))

        config_cnt = 0
        total_sample_cnt = 0
        config_candidates = []
        while config_cnt < num_config and total_sample_cnt < 3 * num_config:
            if random.random() < self.p:
                rand_config = self.config_space.sample_configuration(1)
            else:
                # print('use surrogate to produce candidate.')
                incumbent = dict()
                best_index = np.argmin(self.incumbent_obj)
                incumbent['obj'] = self.incumbent_obj[best_index]
                incumbent['config'] = self.incumbent_configs[best_index]

                self.acquisition_func.update(model=self.surrogate,
                                             eta=incumbent)
                rand_config = self.acq_optimizer.maximize(batch_size=1)[0]
            if rand_config not in config_candidates:
                config_candidates.append(rand_config)
                config_cnt += 1
            total_sample_cnt += 1
        if config_cnt < num_config:
            config_candidates = expand_configurations(config_candidates,
                                                      self.config_space,
                                                      num_config)
        return config_candidates

    def get_incumbent(self, num_inc=1):
        assert (len(self.incumbent_obj) == len(self.incumbent_configs))
        indices = np.argsort(self.incumbent_obj)
        configs = [self.incumbent_configs[i] for i in indices[0:num_inc]]
        targets = [self.incumbent_obj[i] for i in indices[0:num_inc]]
        return configs, targets