Beispiel #1
0
    def __init__(self, config_space, objective_func, R,
                 num_iter=10, n_workers=1, eta=3, es_gap=9, rho=0.7,
                 random_state=1, method_id="Default"):
        BaseFacade.__init__(self, objective_func, n_workers=n_workers, need_lc=True, method_name=method_id)
        self.seed = random_state
        self.config_space = config_space
        self.config_space.seed(self.seed)
        self.R = R
        self.num_iter = num_iter
        self.eta = eta
        self.logeta = lambda x: log(x) / log(self.eta)
        self.s_max = int(self.logeta(R))
        self.inner_iteration_n = (self.s_max + 1) * (self.s_max + 1)

        types, bounds = get_types(config_space)
        self.num_config = len(bounds)
        self.surrogate = RandomForestWithInstances(types=types, bounds=bounds)
        self.acquisition_func = EI(model=self.surrogate)
        # TODO: add SMAC's optimization algorithm.
        self.acq_optimizer = RandomSampling(self.acquisition_func, config_space,
                                            n_samples=max(500, 50 * self.num_config))

        self.incumbent_configs = []
        self.incumbent_obj = []

        self.lcnet_model = LC_ES()
        self.early_stop_gap = es_gap
        self.es_rho = rho
        self.lc_training_x = None
        self.lc_training_y = None
Beispiel #2
0
    def __init__(self,
                 config_space: ConfigurationSpace,
                 objective_func,
                 R,
                 num_iter=10000,
                 eta=3,
                 p=0.3,
                 n_workers=1,
                 random_state=1,
                 method_id='Default'):
        BaseFacade.__init__(self,
                            objective_func,
                            n_workers=n_workers,
                            method_name=method_id)
        self.config_space = config_space
        self.seed = random_state
        self.config_space.seed(self.seed)
        self.p = p
        self.R = R
        self.eta = eta
        self.logeta = lambda x: log(x) / log(self.eta)
        self.s_max = int(self.logeta(self.R))
        self.B = (self.s_max + 1) * self.R
        self.num_iter = num_iter

        types, bounds = get_types(config_space)
        self.num_config = len(bounds)
        self.surrogate = RandomForestWithInstances(types=types, bounds=bounds)
        self.acquisition_func = EI(model=self.surrogate)
        self.acq_optimizer = RandomSampling(self.acquisition_func,
                                            config_space,
                                            n_samples=max(
                                                500, 50 * self.num_config))

        self.incumbent_configs = []
        self.incumbent_obj = []
Beispiel #3
0
    def update_weight(self):
        max_r = self.iterate_r[-1]
        incumbent_configs = self.target_x[max_r]
        test_x = convert_configurations_to_array(incumbent_configs)
        test_y = np.array(self.target_y[max_r], dtype=np.float64)

        r_list = self.weighted_surrogate.surrogate_r
        K = len(r_list)

        if len(test_y) >= 3:
            # Get previous weights
            if self.weight_method in [
                    'rank_loss_softmax', 'rank_loss_single', 'rank_loss_p_norm'
            ]:
                preserving_order_p = list()
                preserving_order_nums = list()
                for i, r in enumerate(r_list):
                    fold_num = 5
                    if i != K - 1:
                        mean, var = self.weighted_surrogate.surrogate_container[
                            r].predict(test_x)
                        tmp_y = np.reshape(mean, -1)
                        preorder_num, pair_num = MFSE.calculate_preserving_order_num(
                            tmp_y, test_y)
                        preserving_order_p.append(preorder_num / pair_num)
                        preserving_order_nums.append(preorder_num)
                    else:
                        if len(test_y) < 2 * fold_num:
                            preserving_order_p.append(0)
                        else:
                            # 5-fold cross validation.
                            kfold = KFold(n_splits=fold_num)
                            cv_pred = np.array([0] * len(test_y))
                            for train_idx, valid_idx in kfold.split(test_x):
                                train_configs, train_y = test_x[
                                    train_idx], test_y[train_idx]
                                valid_configs, valid_y = test_x[
                                    valid_idx], test_y[valid_idx]
                                types, bounds = get_types(self.config_space)
                                _surrogate = RandomForestWithInstances(
                                    types=types, bounds=bounds)
                                _surrogate.train(train_configs, train_y)
                                pred, _ = _surrogate.predict(valid_configs)
                                cv_pred[valid_idx] = pred.reshape(-1)
                            preorder_num, pair_num = MFSE.calculate_preserving_order_num(
                                cv_pred, test_y)
                            preserving_order_p.append(preorder_num / pair_num)
                            preserving_order_nums.append(preorder_num)

                if self.weight_method == 'rank_loss_softmax':
                    order_weight = np.array(np.sqrt(preserving_order_nums))
                    trans_order_weight = order_weight - np.max(order_weight)
                    # Softmax mapping.
                    new_weights = np.exp(trans_order_weight) / sum(
                        np.exp(trans_order_weight))
                elif self.weight_method == 'rank_loss_p_norm':
                    trans_order_weight = np.array(preserving_order_p)
                    power_sum = np.sum(
                        np.power(trans_order_weight, self.power_num))
                    new_weights = np.power(trans_order_weight,
                                           self.power_num) / power_sum
                else:
                    _idx = np.argmax(np.array(preserving_order_nums))
                    new_weights = [0.] * K
                    new_weights[_idx] = 1.
            elif self.weight_method == 'rank_loss_prob':
                # For basic surrogate i=1:K-1.
                mean_list, var_list = list(), list()
                for i, r in enumerate(r_list[:-1]):
                    mean, var = self.weighted_surrogate.surrogate_container[
                        r].predict(test_x)
                    mean_list.append(np.reshape(mean, -1))
                    var_list.append(np.reshape(var, -1))
                sample_num = 100
                min_probability_array = [0] * K
                for _ in range(sample_num):
                    order_preseving_nums = list()

                    # For basic surrogate i=1:K-1.
                    for idx in range(K - 1):
                        sampled_y = np.random.normal(mean_list[idx],
                                                     var_list[idx])
                        _num, _ = MFSE.calculate_preserving_order_num(
                            sampled_y, test_y)
                        order_preseving_nums.append(_num)

                    fold_num = 5
                    # For basic surrogate i=K. cv
                    if len(test_y) < 2 * fold_num:
                        order_preseving_nums.append(0)
                    else:
                        # 5-fold cross validation.
                        kfold = KFold(n_splits=fold_num)
                        cv_pred = np.array([0] * len(test_y))
                        for train_idx, valid_idx in kfold.split(test_x):
                            train_configs, train_y = test_x[train_idx], test_y[
                                train_idx]
                            valid_configs, valid_y = test_x[valid_idx], test_y[
                                valid_idx]
                            types, bounds = get_types(self.config_space)
                            _surrogate = RandomForestWithInstances(
                                types=types, bounds=bounds)
                            _surrogate.train(train_configs, train_y)
                            _pred, _var = _surrogate.predict(valid_configs)
                            sampled_pred = np.random.normal(
                                _pred.reshape(-1), _var.reshape(-1))
                            cv_pred[valid_idx] = sampled_pred
                        _num, _ = MFSE.calculate_preserving_order_num(
                            cv_pred, test_y)
                        order_preseving_nums.append(_num)
                    max_id = np.argmax(order_preseving_nums)
                    min_probability_array[max_id] += 1
                new_weights = np.array(min_probability_array) / sample_num

            elif self.weight_method == 'opt_based':
                mean_list, var_list = list(), list()
                for i, r in enumerate(r_list):
                    if i != K - 1:
                        mean, var = self.weighted_surrogate.surrogate_container[
                            r].predict(test_x)
                        tmp_y = np.reshape(mean, -1)
                        tmp_var = np.reshape(var, -1)
                        mean_list.append(tmp_y)
                        var_list.append(tmp_var)
                    else:
                        if len(test_y) < 8:
                            mean_list.append(np.array([0] * len(test_y)))
                            var_list.append(np.array([0] * len(test_y)))
                        else:
                            # 5-fold cross validation.
                            kfold = KFold(n_splits=5)
                            cv_pred = np.array([0] * len(test_y))
                            cv_var = np.array([0] * len(test_y))
                            for train_idx, valid_idx in kfold.split(test_x):
                                train_configs, train_y = test_x[
                                    train_idx], test_y[train_idx]
                                valid_configs, valid_y = test_x[
                                    valid_idx], test_y[valid_idx]
                                types, bounds = get_types(self.config_space)
                                _surrogate = RandomForestWithInstances(
                                    types=types, bounds=bounds)
                                _surrogate.train(train_configs, train_y)
                                pred, var = _surrogate.predict(valid_configs)
                                cv_pred[valid_idx] = pred.reshape(-1)
                                cv_var[valid_idx] = var.reshape(-1)
                            mean_list.append(cv_pred)
                            var_list.append(cv_var)
                means = np.array(mean_list)
                vars = np.array(var_list) + 1e-8

                def min_func(x):
                    x = np.reshape(np.array(x), (1, len(x)))
                    ensemble_vars = 1 / (x @ (1 / vars))
                    ensemble_means = x @ (means / vars) * ensemble_vars
                    ensemble_means = np.reshape(ensemble_means, -1)
                    self.logger.info("Loss:" + str(x))
                    return MFSE.calculate_ranking_loss(ensemble_means, test_y)

                constraints = [{
                    'type': 'eq',
                    'fun': lambda x: np.sum(x) - 1
                }, {
                    'type': 'ineq',
                    'fun': lambda x: x - 0
                }, {
                    'type': 'ineq',
                    'fun': lambda x: 1 - x
                }]
                res = minimize(min_func,
                               np.array([1e-8] * K),
                               constraints=constraints)
                new_weights = res.x
            else:
                raise ValueError('Invalid weight method: %s!' %
                                 self.weight_method)
        else:
            old_weights = list()
            for i, r in enumerate(r_list):
                _weight = self.weighted_surrogate.surrogate_weight[r]
                old_weights.append(_weight)
            new_weights = old_weights.copy()

        self.logger.info(
            '[%s] %d-th Updating weights: %s' %
            (self.weight_method, self.weight_changed_cnt, str(new_weights)))

        # Assign the weight to each basic surrogate.
        for i, r in enumerate(r_list):
            self.weighted_surrogate.surrogate_weight[r] = new_weights[i]
        self.weight_changed_cnt += 1
        # Save the weight data.
        self.hist_weights.append(new_weights)
        np.save(
            'data/%s_weights_%s.npy' % (self.method_name, self.method_name),
            np.asarray(self.hist_weights))
Beispiel #4
0
class SMAC_ES(BaseFacade):

    def __init__(self, config_space, objective_func, R,
                 num_iter=10, n_workers=1, eta=3, es_gap=9, rho=0.7,
                 random_state=1, method_id="Default"):
        BaseFacade.__init__(self, objective_func, n_workers=n_workers, need_lc=True, method_name=method_id)
        self.seed = random_state
        self.config_space = config_space
        self.config_space.seed(self.seed)
        self.R = R
        self.num_iter = num_iter
        self.eta = eta
        self.logeta = lambda x: log(x) / log(self.eta)
        self.s_max = int(self.logeta(R))
        self.inner_iteration_n = (self.s_max + 1) * (self.s_max + 1)

        types, bounds = get_types(config_space)
        self.num_config = len(bounds)
        self.surrogate = RandomForestWithInstances(types=types, bounds=bounds)
        self.acquisition_func = EI(model=self.surrogate)
        # TODO: add SMAC's optimization algorithm.
        self.acq_optimizer = RandomSampling(self.acquisition_func, config_space,
                                            n_samples=max(500, 50 * self.num_config))

        self.incumbent_configs = []
        self.incumbent_obj = []

        self.lcnet_model = LC_ES()
        self.early_stop_gap = es_gap
        self.es_rho = rho
        self.lc_training_x = None
        self.lc_training_y = None

    def iterate(self):
        for _ in range(self.inner_iteration_n):
            T = self.choose_next(self.num_workers)

            extra_info = None
            lc_info = dict()
            lc_conf_mapping = dict()

            # assume no same configuration in the same batch: T
            for item in T:
                conf_id = get_configuration_id(item.get_dictionary())
                sha = hashlib.sha1(conf_id.encode('utf8'))
                conf_id = sha.hexdigest()
                lc_conf_mapping[conf_id] = item

            total_iter_num = self.R // self.early_stop_gap
            for iter_num in range(1, 1 + total_iter_num):
                self.logger.info('start iteration gap %d' % iter_num)
                ret_val, early_stops = self.run_in_parallel(T, self.early_stop_gap, extra_info)
                val_losses = [item['loss'] for item in ret_val]
                ref_list = [item['ref_id'] for item in ret_val]
                for item in ret_val:
                    conf_id = item['ref_id']
                    if not self.restart_needed:
                        if conf_id not in lc_info:
                            lc_info[conf_id] = []
                        lc_info[conf_id].extend(item['lc_info'])
                    else:
                        lc_info[conf_id] = item['lc_info']

                if iter_num == total_iter_num:
                    self.incumbent_configs.extend(T)
                    self.incumbent_obj.extend(val_losses)

                T = [config for i, config in enumerate(T) if not early_stops[i]]
                extra_info = [ref for i, ref in enumerate(ref_list) if not early_stops[i]]
                if len(T) == 0:
                    break

                if len(self.incumbent_obj) >= 2 * self.num_config and iter_num != total_iter_num:
                    # learning curve based early stop strategy.
                    ref_list = extra_info
                    early_stops = self.stop_early(T)
                    T = [config for i, config in enumerate(T) if not early_stops[i]]
                    extra_info = [ref for i, ref in enumerate(ref_list) if not early_stops[i]]
                if len(T) == 0:
                    break

            # keep learning curve data
            for item, config in lc_conf_mapping.items():
                lc_data = lc_info[item]
                if len(lc_data) > 0:
                    n_epochs = len(lc_data)
                    # self.logger.info('insert one learning curve data into dataset.')
                    t_idx = np.arange(1, n_epochs + 1) / n_epochs
                    conf_data = convert_configurations_to_array([config])
                    x = np.repeat(conf_data, t_idx.shape[0], axis=0)
                    x = np.concatenate((x, t_idx[:, None]), axis=1)
                    y = np.array(lc_data)
                    if self.lc_training_x is None:
                        self.lc_training_x, self.lc_training_y = x, y
                    else:
                        self.lc_training_x = np.concatenate((self.lc_training_x, x), 0)
                        self.lc_training_y = np.concatenate((self.lc_training_y, y), 0)
            self.logger.info('training data shape: %s' % str(self.lc_training_x.shape))
            if len(self.incumbent_obj) >= 2 * self.num_config and len(self.incumbent_obj) % self.num_config == 0:
                self.lcnet_model.train(self.lc_training_x, self.lc_training_y)

            self.add_stage_history(self.stage_id, self.global_incumbent)
            self.stage_id += 1
            self.remove_immediate_model()

    @BaseFacade.process_manage
    def run(self):
        try:
            for iter in range(self.num_iter):
                self.logger.info('-' * 50)
                self.logger.info("SMAC with ES algorithm: %d/%d iteration starts" % (iter, self.num_iter))
                start_time = time.time()
                self.iterate()
                time_elapsed = (time.time() - start_time) / 60
                self.logger.info("iteration took %.2f min." % time_elapsed)
                self.save_intemediate_statistics()
        except Exception as e:
            print(e)
            self.logger.error(str(e))
            # clear the immediate result.
            self.remove_immediate_model()

    def stop_early(self, T):
        configs_data = convert_configurations_to_array(T)
        x_test = None
        for i in range(configs_data.shape[0]):
            x = np.concatenate((configs_data[i, None, :], np.array([[1.0]])), axis=1)
            if x_test is None:
                x_test = x
            else:
                x_test = np.concatenate((x_test, x), 0)

        m, v = self.lcnet_model.predict(x_test)
        best_accuracy = 1 - self.global_incumbent
        s = np.sqrt(v)
        less_p = norm.cdf((best_accuracy - m) / s)
        self.logger.info('early stop prob: %s' % str(less_p))
        early_stop_flag = (less_p >= self.es_rho)

        self.logger.info('early stop vector: %s' % str(early_stop_flag))

        for i, flag in enumerate(early_stop_flag):
            if flag:
                self.incumbent_configs.append(T[i])
                self.incumbent_obj.append(m[i])
        return early_stop_flag

    def choose_next(self, num_config):
        if len(self.incumbent_obj) < 2 * self.num_config:
            return sample_configurations(self.config_space, num_config)

        # print('choose next starts!')
        self.logger.info('train feature is: %s' % str(self.incumbent_configs[-5:]))
        self.logger.info('train target is: %s' % str(self.incumbent_obj))

        self.surrogate.train(convert_configurations_to_array(self.incumbent_configs),
                             np.array(self.incumbent_obj, dtype=np.float64))

        conf_cnt = 0
        total_cnt = 0
        next_configs = []
        while conf_cnt < num_config and total_cnt < 5 * num_config:
            incumbent = dict()
            best_index = np.argmin(self.incumbent_obj)
            incumbent['obj'] = self.incumbent_obj[best_index]
            incumbent['config'] = self.incumbent_configs[best_index]

            self.acquisition_func.update(model=self.surrogate, eta=incumbent)
            rand_config = self.acq_optimizer.maximize(batch_size=1)[0]
            if rand_config not in next_configs:
                next_configs.append(rand_config)
                conf_cnt += 1
            total_cnt += 1
        if conf_cnt < num_config:
            next_configs = expand_configurations(next_configs, self.config_space, num_config)
        return next_configs

    def get_incumbent(self, num_inc=1):
        assert (len(self.incumbent_obj) == len(self.incumbent_configs))
        indices = np.argsort(self.incumbent_obj)
        configs = [self.incumbent_configs[i] for i in indices[0:num_inc]]
        targets = [self.incumbent_obj[i] for i in indices[0: num_inc]]
        return configs, targets
Beispiel #5
0
class BOHB(BaseFacade):
    """ The implementation of BOHB.
        The paper can be found in https://arxiv.org/abs/1807.01774 .
    """
    def __init__(self,
                 config_space: ConfigurationSpace,
                 objective_func,
                 R,
                 num_iter=10000,
                 eta=3,
                 p=0.3,
                 n_workers=1,
                 random_state=1,
                 method_id='Default'):
        BaseFacade.__init__(self,
                            objective_func,
                            n_workers=n_workers,
                            method_name=method_id)
        self.config_space = config_space
        self.seed = random_state
        self.config_space.seed(self.seed)
        self.p = p
        self.R = R
        self.eta = eta
        self.logeta = lambda x: log(x) / log(self.eta)
        self.s_max = int(self.logeta(self.R))
        self.B = (self.s_max + 1) * self.R
        self.num_iter = num_iter

        types, bounds = get_types(config_space)
        self.num_config = len(bounds)
        self.surrogate = RandomForestWithInstances(types=types, bounds=bounds)
        self.acquisition_func = EI(model=self.surrogate)
        self.acq_optimizer = RandomSampling(self.acquisition_func,
                                            config_space,
                                            n_samples=max(
                                                500, 50 * self.num_config))

        self.incumbent_configs = []
        self.incumbent_obj = []

    def iterate(self, skip_last=0):

        for s in reversed(range(self.s_max + 1)):
            # Set initial number of configurations
            n = int(ceil(self.B / self.R / (s + 1) * self.eta**s))
            # Set initial number of iterations per config
            r = self.R * self.eta**(-s)

            # Sample n configurations according to BOHB strategy.
            T = self.choose_next(n)
            extra_info = None
            last_run_num = None
            for i in range((s + 1) - int(skip_last)):  # changed from s + 1
                # Run each of the n configs for <iterations>
                # and keep best (n_configs / eta) configurations.

                n_configs = n * self.eta**(-i)
                n_iterations = r * self.eta**(i)

                n_iter = n_iterations
                if last_run_num is not None and not self.restart_needed:
                    n_iter -= last_run_num
                last_run_num = n_iterations

                self.logger.info(
                    "BOHB: %d configurations x %d iterations each" %
                    (int(n_configs), int(n_iterations)))

                ret_val, early_stops = self.run_in_parallel(
                    T, n_iter, extra_info)
                val_losses = [item['loss'] for item in ret_val]
                ref_list = [item['ref_id'] for item in ret_val]

                if int(n_iterations) == self.R:
                    self.incumbent_configs.extend(T)
                    self.incumbent_obj.extend(val_losses)

                # Select a number of best configurations for the next loop.
                # Filter out early stops, if any.
                indices = np.argsort(val_losses)
                if len(T) == sum(early_stops):
                    break
                if len(T) >= self.eta:
                    T = [T[i] for i in indices if not early_stops[i]]
                    extra_info = [
                        ref_list[i] for i in indices if not early_stops[i]
                    ]
                    reduced_num = int(n_configs / self.eta)
                    T = T[0:reduced_num]
                    extra_info = extra_info[0:reduced_num]
                else:
                    T = [T[indices[0]]]
                    extra_info = [ref_list[indices[0]]]
                incumbent_loss = val_losses[indices[0]]
                self.add_stage_history(
                    self.stage_id, min(self.global_incumbent, incumbent_loss))
                self.stage_id += 1
            self.remove_immediate_model()

    @BaseFacade.process_manage
    def run(self):
        try:
            for iter in range(self.num_iter):
                self.logger.info('-' * 50)
                self.logger.info("BOHB algorithm: %d/%d iteration starts" %
                                 (iter, self.num_iter))
                start_time = time.time()
                self.iterate()
                time_elapsed = (time.time() - start_time) / 60
                self.logger.info("Iteration took %.2f min." % time_elapsed)
                self.save_intemediate_statistics()
        except Exception as e:
            print(e)
            self.logger.error(str(e))
            # Clean the immediate result.
            self.remove_immediate_model()

    def choose_next(self, num_config):
        if len(self.incumbent_obj) < 3:
            return sample_configurations(self.config_space, num_config)

        self.logger.info('Train feature is: %s' %
                         str(self.incumbent_configs[:5]))
        self.logger.info('Train target is: %s' % str(self.incumbent_obj))
        self.surrogate.train(
            convert_configurations_to_array(self.incumbent_configs),
            np.array(self.incumbent_obj, dtype=np.float64))

        config_cnt = 0
        total_sample_cnt = 0
        config_candidates = []
        while config_cnt < num_config and total_sample_cnt < 3 * num_config:
            if random.random() < self.p:
                rand_config = self.config_space.sample_configuration(1)
            else:
                # print('use surrogate to produce candidate.')
                incumbent = dict()
                best_index = np.argmin(self.incumbent_obj)
                incumbent['obj'] = self.incumbent_obj[best_index]
                incumbent['config'] = self.incumbent_configs[best_index]

                self.acquisition_func.update(model=self.surrogate,
                                             eta=incumbent)
                rand_config = self.acq_optimizer.maximize(batch_size=1)[0]
            if rand_config not in config_candidates:
                config_candidates.append(rand_config)
                config_cnt += 1
            total_sample_cnt += 1
        if config_cnt < num_config:
            config_candidates = expand_configurations(config_candidates,
                                                      self.config_space,
                                                      num_config)
        return config_candidates

    def get_incumbent(self, num_inc=1):
        assert (len(self.incumbent_obj) == len(self.incumbent_configs))
        indices = np.argsort(self.incumbent_obj)
        configs = [self.incumbent_configs[i] for i in indices[0:num_inc]]
        targets = [self.incumbent_obj[i] for i in indices[0:num_inc]]
        return configs, targets