Beispiel #1
0
    def test_predictor_deduplicate_data(self):
        n_points = 100
        input_dataframe = pd.DataFrame({
            'numeric_int': [x % 44 for x in list(range(n_points))],
            'numeric_int_2': [x % 20 for x in list(range(n_points))],
        }, index=list(range(n_points)))
        input_dataframe['y'] = input_dataframe['numeric_int'] % 10

        # Add duplicate row
        input_dataframe = input_dataframe.append(input_dataframe.iloc[99], ignore_index=True)

        mdb = Predictor(name='test_drop_duplicates')
        mdb.learn(
            from_data=input_dataframe,
            to_predict='y',
            stop_training_in_x_seconds=1,
            use_gpu=False
        )

        model_data = F.get_model_data('test_drop_duplicates')

        # Ensure duplicate row was not used for training, or analysis

        assert model_data['data_preparation']['total_row_count'] == n_points
        assert model_data['data_preparation']['used_row_count'] <= n_points

        assert sum([model_data['data_preparation']['train_row_count'],
                   model_data['data_preparation']['validation_row_count'],
                   model_data['data_preparation']['test_row_count']]) == n_points

        assert sum([mdb.transaction.input_data.train_df.shape[0],
                    mdb.transaction.input_data.test_df.shape[0],
                    mdb.transaction.input_data.validation_df.shape[0]]) == n_points

        # Disable deduplication and ensure the duplicate row is used
        mdb = Predictor(name='test_drop_duplicates')
        mdb.learn(
            from_data=input_dataframe,
            to_predict='y',
            stop_training_in_x_seconds=1,
            use_gpu=False,
            advanced_args={
                'deduplicate_data': False
            }
        )

        model_data = F.get_model_data('test_drop_duplicates')

        # Duplicate row was used for analysis and training

        assert model_data['data_preparation']['total_row_count'] == n_points+1
        assert model_data['data_preparation']['used_row_count'] <= n_points+1

        assert sum([model_data['data_preparation']['train_row_count'],
                    model_data['data_preparation']['validation_row_count'],
                    model_data['data_preparation']['test_row_count']]) == n_points+1

        assert sum([mdb.transaction.input_data.train_df.shape[0],
                    mdb.transaction.input_data.test_df.shape[0],
                    mdb.transaction.input_data.validation_df.shape[0]]) == n_points+1
    def test_category_tags_output(self):
        vocab = random.sample(SMALL_VOCAB, 10)
        vocab = {i: word for i, word in enumerate(vocab)}
        # x1 contains the index of first tag present
        # x2 contains the index of second tag present
        # if a tag is missing then x1/x2 contain -1 instead
        # Thus the dataset should be perfectly predicted
        n_points = 5000
        x1 = [
            random.randint(0,
                           len(vocab) - 1) if random.random() > 0.1 else -1
            for i in range(n_points)
        ]
        x2 = [
            random.randint(0,
                           len(vocab) - 1) if random.random() > 0.1 else -1
            for i in range(n_points)
        ]
        tags = []
        for x1_index, x2_index in zip(x1, x2):
            row_tags = set([vocab.get(x1_index), vocab.get(x2_index)])
            row_tags = [x for x in row_tags if x is not None]
            tags.append(','.join(row_tags))

        df = pd.DataFrame({'x1': x1, 'x2': x2, 'tags': tags})

        df_train = df.iloc[:round(n_points * 0.9)]
        df_test = df.iloc[round(n_points * 0.9):]

        predictor = Predictor('test')

        predictor.learn(from_data=df_train,
                        to_predict='tags',
                        advanced_args=dict(deduplicate_data=False),
                        stop_training_in_x_seconds=60,
                        use_gpu=False)

        model_data = F.get_model_data('test')
        assert model_data['data_analysis_v2']['tags']['typing'][
            'data_type'] == DATA_TYPES.CATEGORICAL
        assert model_data['data_analysis_v2']['tags']['typing'][
            'data_subtype'] == DATA_SUBTYPES.TAGS

        predictions = predictor.predict(when_data=df_test)
        test_tags = df_test.tags.apply(lambda x: x.split(','))

        predicted_tags = []
        for i in range(len(predictions)):
            predicted_tags.append(predictions[i]['tags'])

        test_tags_encoded = predictor.transaction.model_backend.predictor._mixer.encoders[
            'tags'].encode(test_tags)
        pred_labels_encoded = predictor.transaction.model_backend.predictor._mixer.encoders[
            'tags'].encode(predicted_tags)
        score = f1_score(test_tags_encoded,
                         pred_labels_encoded,
                         average='weighted')

        assert score >= 0.3
    def test_timeseries(self, tmp_path):
        ts_hours = 12
        data_len = 120
        train_file_name = os.path.join(str(tmp_path), 'train_data.csv')
        test_file_name = os.path.join(str(tmp_path), 'test_data.csv')

        features = generate_value_cols(['date', 'int'], data_len,
                                       ts_hours * 3600)
        labels = [generate_timeseries_labels(features)]

        feature_headers = list(map(lambda col: col[0], features))
        label_headers = list(map(lambda col: col[0], labels))

        # Create the training dataset and save it to a file
        columns_train = list(
            map(lambda col: col[1:int(len(col) * 3 / 4)], features))
        columns_train.extend(
            list(map(lambda col: col[1:int(len(col) * 3 / 4)], labels)))
        columns_to_file(columns_train,
                        train_file_name,
                        headers=[*feature_headers, *label_headers])
        # Create the testing dataset and save it to a file
        columns_test = list(
            map(lambda col: col[int(len(col) * 3 / 4):], features))
        columns_to_file(columns_test, test_file_name, headers=feature_headers)

        mdb = Predictor(name='test_timeseries')

        mdb.learn(from_data=train_file_name,
                  to_predict=label_headers,
                  timeseries_settings={
                      'order_by': [feature_headers[0]],
                      'window': 3
                  },
                  stop_training_in_x_seconds=10,
                  use_gpu=False,
                  advanced_args={'force_predict': True})

        results = mdb.predict(when_data=test_file_name, use_gpu=False)

        for row in results:
            expect_columns = [
                label_headers[0], label_headers[0] + '_confidence'
            ]
            for col in expect_columns:
                assert col in row

        models = F.get_models()
        model_data = F.get_model_data(models[0]['name'])
        assert model_data
Beispiel #4
0
    def get_model_data(self, name, native_view=False):
        model = F.get_model_data(name)
        if native_view:
            return model

        data_analysis = model['data_analysis_v2']
        for column in data_analysis['columns']:
            if len(data_analysis[column]) == 0 or data_analysis[column].get(
                    'empty', {}).get('is_empty', False):
                data_analysis[column]['typing'] = {
                    'data_subtype': DATA_SUBTYPES.INT
                }

        return model
    def test_category_tags_input(self):
        vocab = random.sample(SMALL_VOCAB, 10)
        # tags contains up to 2 randomly selected tags
        # y contains the sum of indices of tags
        # the dataset should be nearly perfectly predicted
        n_points = 5000
        tags = []
        y = []
        for i in range(n_points):
            row_tags = []
            row_y = 0
            for k in range(2):
                if random.random() > 0.2:
                    selected_index = random.randint(0, len(vocab) - 1)
                    if vocab[selected_index] not in row_tags:
                        row_tags.append(vocab[selected_index])
                        row_y += selected_index
            tags.append(','.join(row_tags))
            y.append(row_y)

        df = pd.DataFrame({'tags': tags, 'y': y})

        df_train = df.iloc[:round(n_points * 0.9)]
        df_test = df.iloc[round(n_points * 0.9):]

        predictor = Predictor(name='test')

        predictor.learn(from_data=df_train,
                        to_predict='y',
                        advanced_args=dict(deduplicate_data=False),
                        stop_training_in_x_seconds=40,
                        use_gpu=False)

        model_data = F.get_model_data('test')
        assert model_data['data_analysis_v2']['tags']['typing'][
            'data_type'] == DATA_TYPES.CATEGORICAL
        assert model_data['data_analysis_v2']['tags']['typing'][
            'data_subtype'] == DATA_SUBTYPES.TAGS

        predictions = predictor.predict(when_data=df_test)
        test_y = df_test.y.apply(str)

        predicted_y = []
        for i in range(len(predictions)):
            predicted_y.append(predictions[i]['y'])

        score = accuracy_score(test_y, predicted_y)
        assert score >= 0.2
Beispiel #6
0
    def get_model_data(self, name, db_fix=True):
        model = F.get_model_data(name)

        # Make some corrections for databases not to break when dealing with empty columns
        if db_fix:
            data_analysis = model['data_analysis_v2']
            for column in data_analysis['columns']:
                analysis = data_analysis.get(column)
                if isinstance(analysis,
                              dict) and (len(analysis) == 0 or analysis.get(
                                  'empty', {}).get('is_empty', False)):
                    data_analysis[column]['typing'] = {
                        'data_subtype': DATA_SUBTYPES.INT
                    }

        return model
Beispiel #7
0
    def test_multilabel_prediction(self, tmp_path):
        train_file_name = os.path.join(str(tmp_path), 'train_data.csv')
        test_file_name = os.path.join(str(tmp_path), 'test_data.csv')
        data_len = 60

        features = generate_value_cols(['int', 'float', 'int', 'float'], data_len)
        labels = []
        labels.append(generate_log_labels(features))
        labels.append(generate_timeseries_labels(features))

        feature_headers = list(map(lambda col: col[0], features))
        label_headers = list(map(lambda col: col[0], labels))

        # Create the training dataset and save it to a file
        columns_train = list(
            map(lambda col: col[1:int(len(col) * 3 / 4)], features))
        columns_train.extend(
            list(map(lambda col: col[1:int(len(col) * 3 / 4)], labels)))
        columns_to_file(columns_train, train_file_name,
                        headers=[*feature_headers, *label_headers])

        # Create the testing dataset and save it to a file
        columns_test = list(
            map(lambda col: col[int(len(col) * 3 / 4):], features))
        columns_to_file(columns_test, test_file_name,
                        headers=feature_headers)

        mdb = Predictor(name='test_multilabel_prediction')
        mdb.learn(
            from_data=train_file_name,
            to_predict=label_headers,
            stop_training_in_x_seconds=1,
            use_gpu=False,
            advanced_args={'force_predict': True}
        )

        results = mdb.predict(when_data=test_file_name)
        models = F.get_models()
        model_data = F.get_model_data(models[0]['name'])
        assert model_data

        for i in range(len(results)):
            row = results[i]
            for label in label_headers:
                expect_columns = [label, label + '_confidence']
                for col in expect_columns:
                    assert col in row
    def get_model_data(self, name, db_fix=True):
        from mindsdb_native import F
        from mindsdb_native.libs.constants.mindsdb import DATA_SUBTYPES
        from mindsdb.interfaces.storage.db import session, Predictor

        predictor_record = Predictor.query.filter_by(
            company_id=self.company_id, name=name, is_custom=False).first()
        predictor_record = self._try_outdate_db_status(predictor_record)
        model = predictor_record.data
        if model is None or model['status'] == 'training':
            try:
                self.fs_store.get(
                    name, f'predictor_{self.company_id}_{predictor_record.id}',
                    self.config['paths']['predictors'])
                new_model_data = F.get_model_data(name)
            except Exception:
                new_model_data = None

            if predictor_record.data is None or (
                    new_model_data is not None
                    and len(new_model_data) > len(predictor_record.data)):
                predictor_record.data = new_model_data
                model = new_model_data
                session.commit()

        # Make some corrections for databases not to break when dealing with empty columns
        if db_fix:
            data_analysis = model['data_analysis_v2']
            for column in model['columns']:
                analysis = data_analysis.get(column)
                if isinstance(analysis,
                              dict) and (len(analysis) == 0 or analysis.get(
                                  'empty', {}).get('is_empty', False)):
                    data_analysis[column]['typing'] = {
                        'data_subtype': DATA_SUBTYPES.INT
                    }

        model['created_at'] = str(
            parse_datetime(str(predictor_record.created_at).split('.')[0]))
        model['updated_at'] = str(
            parse_datetime(str(predictor_record.updated_at).split('.')[0]))
        model['predict'] = predictor_record.to_predict
        model['update'] = predictor_record.update_status
        return self._pack(model)
Beispiel #9
0
    def predict(self, name, when_data=None, kwargs={}):
        if name not in self.predictor_cache:
            # Clear the cache entirely if we have less than .12 GB left
            if psutil.virtual_memory().available < 1.2 * pow(10, 9):
                self.predictor_cache = {}

            if F.get_model_data(name)['status'] == 'complete':
                self.predictor_cache[name] = {
                    'predictor':
                    mindsdb_native.Predictor(name=name,
                                             run_env={'trigger': 'mindsdb'}),
                    'created':
                    datetime.datetime.now()
                }

        predictions = self.predictor_cache[name]['predictor'].predict(
            when_data=when_data, **kwargs)

        return predictions
    def test_house_pricing(self, use_gpu):
        """
        Tests whole pipeline from downloading the dataset to making predictions and explanations.
        """
        # Create & Learn
        name = 'home_rentals_price'
        mdb = Predictor(name=name)
        mdb.learn(
            to_predict='rental_price',
            from_data=
            "https://s3.eu-west-2.amazonaws.com/mindsdb-example-data/home_rentals.csv",
            backend='lightwood',
            stop_training_in_x_seconds=80,
            use_gpu=use_gpu)

        def assert_prediction_interface(predictions):
            for prediction in predictions:
                assert hasattr(prediction, 'explanation')

        test_results = mdb.test(
            when_data=
            "https://s3.eu-west-2.amazonaws.com/mindsdb-example-data/home_rentals.csv",
            accuracy_score_functions=r2_score,
            predict_args={'use_gpu': use_gpu})
        assert test_results['rental_price_accuracy'] >= 0.8

        predictions = mdb.predict(
            when_data=
            "https://s3.eu-west-2.amazonaws.com/mindsdb-example-data/home_rentals.csv",
            use_gpu=use_gpu)
        assert_prediction_interface(predictions)
        predictions = mdb.predict(when_data={'sqft': 300}, use_gpu=use_gpu)
        assert_prediction_interface(predictions)

        amd = F.get_model_data(name)
        assert isinstance(json.dumps(amd), str)

        for k in [
                'status', 'name', 'version', 'data_source', 'current_phase',
                'updated_at', 'created_at', 'train_end_at'
        ]:
            assert isinstance(amd[k], str)

        assert isinstance(amd['predict'], (list, str))
        assert isinstance(amd['is_active'], bool)

        for k in ['validation_set_accuracy', 'accuracy']:
            assert isinstance(amd[k], float)

        for k in amd['data_preparation']:
            assert isinstance(amd['data_preparation'][k], (int, float))

        for k in amd['data_analysis']:
            assert (len(amd['data_analysis'][k]) > 0)
            assert isinstance(amd['data_analysis'][k][0], dict)

        model_analysis = amd['model_analysis']
        assert (len(model_analysis) > 0)
        assert isinstance(model_analysis[0], dict)
        input_importance = model_analysis[0]["overall_input_importance"]
        assert (len(input_importance) > 0)
        assert isinstance(input_importance, dict)

        for k in ['train', 'test', 'valid']:
            assert isinstance(model_analysis[0][k + '_data_accuracy'], dict)
            assert len(model_analysis[0][k + '_data_accuracy']) == 1
            assert model_analysis[0][k +
                                     '_data_accuracy']['rental_price'] > 0.4

        for column, importance in zip(input_importance["x"],
                                      input_importance["y"]):
            assert isinstance(column, str)
            assert (len(column) > 0)
            assert isinstance(importance, (float, int))
            assert (importance >= 0 and importance <= 10)

        # Test confidence estimation after save -> load
        p = None
        F.export_predictor(name)
        F.import_model(f"{name}.zip", f"{name}-new")
        p = Predictor(name=f'{name}-new')
        predictions = p.predict(when_data={'sqft': 1000},
                                use_gpu=use_gpu,
                                run_confidence_variation_analysis=True)
        assert_prediction_interface(predictions)
Beispiel #11
0
 def get_model_data(self, name):
     return F.get_model_data(name)