Beispiel #1
0
def test_random_vertical_valid_prob_py():
    """
    Test RandomVerticalFlip op with py_transforms: valid non-default input, expect to pass
    """
    logger.info("test_random_vertical_valid_prob_py")
    original_seed = config_get_set_seed(0)
    original_num_parallel_workers = config_get_set_num_parallel_workers(1)

    # Generate dataset
    data = ds.TFRecordDataset(DATA_DIR,
                              SCHEMA_DIR,
                              columns_list=["image"],
                              shuffle=False)
    transforms = [
        py_vision.Decode(),
        py_vision.RandomVerticalFlip(0.8),
        py_vision.ToTensor()
    ]
    transform = py_vision.ComposeOp(transforms)
    data = data.map(input_columns=["image"], operations=transform())

    filename = "random_vertical_01_py_result.npz"
    save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)

    # Restore config setting
    ds.config.set_seed(original_seed)
    ds.config.set_num_parallel_workers(original_num_parallel_workers)
Beispiel #2
0
def test_random_vertical_comp(plot=False):
    """
    Test test_random_vertical_flip and compare between python and c image augmentation ops
    """
    logger.info("test_random_vertical_comp")

    # First dataset
    data1 = ds.TFRecordDataset(DATA_DIR,
                               SCHEMA_DIR,
                               columns_list=["image"],
                               shuffle=False)
    decode_op = c_vision.Decode()
    # Note: The image must be flipped if prob is set to be 1
    random_horizontal_op = c_vision.RandomVerticalFlip(1)
    data1 = data1.map(input_columns=["image"], operations=decode_op)
    data1 = data1.map(input_columns=["image"], operations=random_horizontal_op)

    # Second dataset
    data2 = ds.TFRecordDataset(DATA_DIR,
                               SCHEMA_DIR,
                               columns_list=["image"],
                               shuffle=False)
    transforms = [
        py_vision.Decode(),
        # Note: The image must be flipped if prob is set to be 1
        py_vision.RandomVerticalFlip(1),
        py_vision.ToTensor()
    ]
    transform = py_vision.ComposeOp(transforms)
    data2 = data2.map(input_columns=["image"], operations=transform())

    images_list_c = []
    images_list_py = []
    for item1, item2 in zip(data1.create_dict_iterator(),
                            data2.create_dict_iterator()):
        image_c = item1["image"]
        image_py = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
        images_list_c.append(image_c)
        images_list_py.append(image_py)

        # Check if the output images are the same
        mse = diff_mse(image_c, image_py)
        assert mse < 0.001
    if plot:
        visualize_list(images_list_c, images_list_py, visualize_mode=2)
Beispiel #3
0
def test_random_vertical_invalid_prob_py():
    """
    Test RandomVerticalFlip op in py_transforms: invalid input, expect to raise error
    """
    logger.info("test_random_vertical_invalid_prob_py")

    # Generate dataset
    data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
    try:
        transforms = [
            py_vision.Decode(),
            # Note: Valid range of prob should be [0.0, 1.0]
            py_vision.RandomVerticalFlip(1.5),
            py_vision.ToTensor()
        ]
        transform = py_vision.ComposeOp(transforms)
        data = data.map(input_columns=["image"], operations=transform())
    except ValueError as e:
        logger.info("Got an exception in DE: {}".format(str(e)))
        assert 'Input prob is not within the required interval of (0.0 to 1.0).' in str(e)