Beispiel #1
0
    def __init__(self, num_class=10, channel=1):
        super(LeNet5, self).__init__()
        self.num_class = num_class

        self.conv1 = nn.Conv2dBnFoldQuant(channel,
                                          6,
                                          5,
                                          pad_mode='valid',
                                          per_channel=True,
                                          quant_delay=900)
        self.conv2 = nn.Conv2dBnFoldQuant(6,
                                          16,
                                          5,
                                          pad_mode='valid',
                                          per_channel=True,
                                          quant_delay=900)
        self.fc1 = nn.DenseQuant(16 * 5 * 5,
                                 120,
                                 per_channel=True,
                                 quant_delay=900)
        self.fc2 = nn.DenseQuant(120, 84, per_channel=True, quant_delay=900)
        self.fc3 = nn.DenseQuant(84,
                                 self.num_class,
                                 per_channel=True,
                                 quant_delay=900)

        self.relu = nn.ActQuant(nn.ReLU(), per_channel=False, quant_delay=900)
        self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
        self.flatten = nn.Flatten()
Beispiel #2
0
    def __init__(self, num_class=10, channel=1):
        super(LeNet5, self).__init__()
        self.num_class = num_class
        self.qconfig = create_quant_config(per_channel=(True, False),
                                           symmetric=(True, False))

        self.conv1 = nn.Conv2dQuant(channel,
                                    6,
                                    5,
                                    pad_mode='valid',
                                    quant_config=self.qconfig,
                                    quant_dtype=QuantDtype.INT8)
        self.conv2 = nn.Conv2dQuant(6,
                                    16,
                                    5,
                                    pad_mode='valid',
                                    quant_config=self.qconfig,
                                    quant_dtype=QuantDtype.INT8)
        self.fc1 = nn.DenseQuant(16 * 5 * 5,
                                 120,
                                 quant_config=self.qconfig,
                                 quant_dtype=QuantDtype.INT8)
        self.fc2 = nn.DenseQuant(120,
                                 84,
                                 quant_config=self.qconfig,
                                 quant_dtype=QuantDtype.INT8)
        self.fc3 = nn.DenseQuant(84,
                                 self.num_class,
                                 quant_config=self.qconfig,
                                 quant_dtype=QuantDtype.INT8)

        self.relu = nn.ActQuant(nn.ReLU(),
                                quant_config=self.qconfig,
                                quant_dtype=QuantDtype.INT8)
        self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
        self.flatten = nn.Flatten()
Beispiel #3
0
    def __init__(self, in_channels, out_channels, has_bias, has_bn):
        super(LastQuantLayer, self).__init__()

        self.dense_inner = nn.DenseQuant(in_channels,
                                         out_channels,
                                         has_bias=has_bias,
                                         quant_config=quant_config,
                                         quant_dtype=QuantDtype.INT8)
        self.fake_quant_act = nn.FakeQuantWithMinMaxObserver(
            min_init=-16,
            max_init=16,
            ema=True,
            quant_dtype=QuantDtype.INT8,
            per_channel=False,
            symmetric=True,
            narrow_range=True,
            mode="LEARNED_SCALE")
Beispiel #4
0
    def __init__(self, block, layer_nums, in_channels, out_channels, strides,
                 num_classes):
        super(ResNet, self).__init__()

        if not len(layer_nums) == len(in_channels) == len(out_channels) == 4:
            raise ValueError(
                "the length of layer_num, in_channels, out_channels list must be 4!"
            )

        self.conv1 = ConvBNReLU(3, 64, kernel_size=7, stride=2)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="same")

        self.layer1 = self._make_layer(block,
                                       layer_nums[0],
                                       in_channel=in_channels[0],
                                       out_channel=out_channels[0],
                                       stride=strides[0])
        self.layer2 = self._make_layer(block,
                                       layer_nums[1],
                                       in_channel=in_channels[1],
                                       out_channel=out_channels[1],
                                       stride=strides[1])
        self.layer3 = self._make_layer(block,
                                       layer_nums[2],
                                       in_channel=in_channels[2],
                                       out_channel=out_channels[2],
                                       stride=strides[2])
        self.layer4 = self._make_layer(block,
                                       layer_nums[3],
                                       in_channel=in_channels[3],
                                       out_channel=out_channels[3],
                                       stride=strides[3])

        self.mean = P.ReduceMean(keep_dims=True)
        self.flatten = nn.Flatten()
        self.end_point = nn.DenseQuant(out_channels[3],
                                       num_classes,
                                       has_bias=True,
                                       per_channel=_per_channel,
                                       symmetric=_symmetric)
        self.output_fake = nn.FakeQuantWithMinMax(ema=True,
                                                  ema_decay=_ema_decay)

        # init weights
        self._initialize_weights()
    def __init__(self,
                 num_classes=1000,
                 width_mult=1.,
                 has_dropout=False,
                 inverted_residual_setting=None,
                 round_nearest=8):
        super(MobileNetV2Quant, self).__init__()
        block = InvertedResidual
        input_channel = 32
        last_channel = 1280
        # setting of inverted residual blocks
        self.cfgs = inverted_residual_setting
        if inverted_residual_setting is None:
            self.cfgs = [
                # t, c, n, s
                [1, 16, 1, 1],
                [6, 24, 2, 2],
                [6, 32, 3, 2],
                [6, 64, 4, 2],
                [6, 96, 3, 1],
                [6, 160, 3, 2],
                [6, 320, 1, 1],
            ]

        # building first layer
        input_channel = _make_divisible(input_channel * width_mult,
                                        round_nearest)
        self.out_channels = _make_divisible(
            last_channel * max(1.0, width_mult), round_nearest)
        self.input_fake = nn.FakeQuantWithMinMax(ema=True,
                                                 ema_decay=_ema_decay,
                                                 quant_delay=_quant_delay)
        features = [ConvBNReLU(3, input_channel, stride=2)]
        # building inverted residual blocks
        for t, c, n, s in self.cfgs:
            output_channel = _make_divisible(c * width_mult, round_nearest)
            for i in range(n):
                stride = s if i == 0 else 1
                features.append(
                    block(input_channel,
                          output_channel,
                          stride,
                          expand_ratio=t))
                input_channel = output_channel
        # building last several layers
        features.append(
            ConvBNReLU(input_channel, self.out_channels, kernel_size=1))
        # make it nn.CellList
        self.features = nn.SequentialCell(features)
        # mobilenet head
        head = ([
            GlobalAvgPooling(),
            nn.DenseQuant(self.out_channels,
                          num_classes,
                          has_bias=True,
                          per_channel=_per_channel,
                          symmetric=_symmetric,
                          quant_delay=_quant_delay),
            nn.FakeQuantWithMinMax(ema=True, ema_decay=_ema_decay)
        ] if not has_dropout else [
            GlobalAvgPooling(),
            nn.Dropout(0.2),
            nn.DenseQuant(self.out_channels,
                          num_classes,
                          has_bias=True,
                          per_channel=_per_channel,
                          symmetric=_symmetric,
                          quant_delay=_quant_delay),
            nn.FakeQuantWithMinMax(
                ema=True, ema_decay=_ema_decay, quant_delay=_quant_delay)
        ])
        self.head = nn.SequentialCell(head)