def begin(self, run_context):
        cb_params = run_context.original_args()
        self._check_callbacks(cb_params)

        if cb_params.mode not in ModeEnum.to_list():
            raise ValueError(
                'Only support `train` (model.train) and `eval` (model.eval) mode, '
                'but got `{cb_params.mode}` mode.')

        self._record.set_mode(cb_params.mode)
        if cb_params.mode == ModeEnum.TRAIN.value:
            # Note: if model.init is not executed then the computed graph will not be obtained here
            # The purpose of recording the graph here was to collect_freq if it was set to a large size,
            # but also want to see the graph as soon after compilation.
            self._collect_graphs(cb_params)

            self._collect_dataset_graph(cb_params)

        if self._custom_lineage_data and not self._has_saved_custom_data:
            packaged_custom_data = self._package_custom_lineage_data(
                self._custom_lineage_data)
            self._record.add_value('custom_lineage_data',
                                   'custom_lineage_data', packaged_custom_data)
            self._has_saved_custom_data = True

        # There's nothing special about setting step to 0 here, just to satisfy the interface call
        self._record.record(step=0)
Beispiel #2
0
    def begin(self, run_context):
        cb_params = run_context.original_args()
        self._check_callbacks(cb_params)

        if cb_params.mode not in ModeEnum.to_list():
            raise ValueError(
                'Only support `train` (model.train) and `eval` (model.eval) mode, '
                'but got `{cb_params.mode}` mode.')

        self._record.set_mode(cb_params.mode)
Beispiel #3
0
    def begin(self, run_context):
        cb_params = run_context.original_args()
        self._check_callbacks(cb_params)

        if cb_params.mode not in ModeEnum.to_list():
            raise ValueError(
                'Only support `train` (model.train) and `eval` (model.eval) mode, '
                'but got `{cb_params.mode}` mode.')

        self._record.set_mode(cb_params.mode)

        if cb_params.mode == ModeEnum.TRAIN.value:
            if self._collect_tensor_freq is None:
                default_tensor_summary_limit = 20
                total_step = cb_params.epoch_num * cb_params.batch_num
                self._collect_tensor_freq = max(
                    self._collect_freq,
                    total_step // default_tensor_summary_limit)