def comparedWithRmsd(fixed_rmsd_xcms):
        def calculateAUC(scores):
            scores["native_like"] = scores.rmsd.apply(
                lambda r: 1 if r < 3 else 0)
            fpr, tpr, thresholds = metrics.roc_curve(scores.native_like,
                                                     scores.spearmanr,
                                                     pos_label=1)
            return metrics.auc(fpr, tpr)

        '''
        # averaged spearmanr
        print(
            "################################################################################")
        ave_spearmanr = fixed_rmsd_xcms.groupby("query").apply(
            lambda g: g[["spearmanr", "rmsd"]].mean())
        print("AUC:", calculateAUC(ave_spearmanr))
        pprint(ave_spearmanr.corr())
        pprint(pd.Series(minepy.minestats(ave_spearmanr.rmsd,
                                          ave_spearmanr.spearmanr)))

        # ave_spearmanr.plot(kind='scatter', x='rmsd', y="spearmanr")

        # plt.savefig('rmsd_ave_spearmanr.png')

        # tc_times_ps weighted spearmanr
        def weighted(g):
            score = g["tc_times_ps"].dot(g["spearmanr"]) / g[
                "tc_times_ps"].sum()
            return pd.DataFrame(
                {"rmsd": g["rmsd"].tolist()[0],
                 "spearmanr": score},
                index=[0])

        # tc_times_ps weighted spearmanr
        print(
            "################################################################################")
        weighted_spearmanr = fixed_rmsd_xcms.groupby("query").apply(
            weighted)
        print("AUC:", calculateAUC(weighted_spearmanr))
        pprint(weighted_spearmanr.corr())
        pprint(pd.Series(minepy.minestats(weighted_spearmanr.rmsd,
                                          weighted_spearmanr.spearmanr)))
        # weighted_spearmanr.plot(kind='scatter', x='rmsd', y="spearmanr")
        # plt.savefig('rmsd_weighted_spearmanr.png')
        '''

        # tc_times_ps ranked spearmanr
        print(
            "################################################################################")
        ranked_spearmanr = fixed_rmsd_xcms.groupby("query").apply(
            lambda g: g.sort_values("tc_times_ps", ascending=False).iloc[0][["spearmanr", "rmsd"]])
        print("AUC:", calculateAUC(ranked_spearmanr))
        print
        pprint(ranked_spearmanr.corr())
        print
        pprint(pd.Series(minepy.minestats(ranked_spearmanr.rmsd,
                                          ranked_spearmanr.spearmanr)))
def doCorrelation(vectorX, vectorY):
    corrList_=[]
    #from minepy import minepy
    from scipy import stats
    import minepy
    ## do not chnage alpha and c in the following line     
    minedValue  = minepy.minestats(vectorX, vectorY, alpha=0.6, c=15)
    spearmanValue = stats.spearmanr(vectorX, vectorY)
    pearsonValue = stats.pearsonr(vectorX, vectorY)
    corrList_ =[pearsonValue[0] , pearsonValue[1],  spearmanValue[0], spearmanValue[1], minedValue['mic'], minedValue['nonlinearity']]

    return corrList_       
def doCorrelation(vectorX, vectorY):
    corrList_ = []
    #from minepy import minepy
    from scipy import stats
    import minepy
    ## do not chnage alpha and c in the following line
    minedValue = minepy.minestats(vectorX, vectorY, alpha=0.6, c=15)
    spearmanValue = stats.spearmanr(vectorX, vectorY)
    pearsonValue = stats.pearsonr(vectorX, vectorY)
    corrList_ = [
        pearsonValue[0], pearsonValue[1], spearmanValue[0], spearmanValue[1],
        minedValue['mic'], minedValue['nonlinearity']
    ]

    return corrList_
Beispiel #4
0
def performMIC(combined_list, l1, l2):
    print (l1, l2, len(combined_list))
    outfile2 = open(prots+"_mic"+".csv", 'w')
    outfile2.writelines('first,' + 'second,' + 'mic,' + '\n')
  
    for counter1 in range(0, l1-1):
        for counter2 in range(l1, len(combined_list)-1):

            mine_result = minestats(combined_list[counter1],combined_list[counter2],alpha=0.6, c=15)
            print (mine_result.items())
            outfile2.writelines(str(counter1)+','+str(counter2-l1)+','+str(mine_result['mic']))           
            outfile2.write('\n')
            outfile2.flush()

    outfile2.close()
def correlation(df):
    tc_times_ps = df.Tc * df.ps_score
    print("Maximal information-based stats")
    pprint(minepy.minestats(tc_times_ps, df['spearmanr']))
Beispiel #6
0
    sph_obs = int(np.round(1/(tsol[1]-tsol[0])))
    ts_data = sol[:,[0,2,4,6]]
    ts_pre_fix = np.copy(ts_data)
    ts_data = np.zeros([np.floor(sph*len(ts_data)/sph_obs),cellcount])
    for i in range(len(ts_data)):
        ts_data[i,:] = np.sum(ts_pre_fix[
                int(i*sph_obs/sph):int((1+i)*sph_obs/sph),:],axis=0)    

    mic = np.zeros([cellcount**2,4])
    aa = [range(cellcount),range(cellcount)]
    inds = list(itertools.product(*aa))
    for i in xrange(len(inds)):
        [c1,c2] = inds[i]
        ts1 = ts_data[:,c1]
        ts2 = ts_data[:,c2]
        mic[i,:] = [c1, c2, mp.minestats(ts1,ts2)['mic'], 
                            stats.linregress(ts1,ts2)[2]]
    
    hmp = np.zeros([cellcount,cellcount])
    hmp2 = np.copy(hmp)
    for i in range(len(mic)):
        ind1 = mic[i][0]
        ind2 = mic[i][1]
        hmp[ind1,ind2] = mic[i][2]
        hmp2[ind1,ind2] = mic[i][3]
    np.fill_diagonal(hmp,0)
    
    plt.figure(2)
    plt.pcolormesh(hmp2)
    plt.colorbar()