Beispiel #1
0
def benchmark(
        num_evaluations: int,
        optimizer_factory: Callable[[], Optimizer],
        blackbox: Blackbox,
        candidates: np.array,
        num_seeds: int,
        verbose: bool = False,
) -> Tuple[np.array]:
    """
    For each seed, the optimizer is run 'num_evaluations'.
    :param num_evaluations:
    :param optimizer_factory:
    :param blackbox:
    :param candidates:
    :param num_seeds:
    :param verbose:
    :return: two tensors of shape (num_seeds, num_evaluations, X) where X = [input_dim, output_dim]
    """
    seeds = range(num_seeds)
    #if verbose:
    #    seeds = tqdm(seeds)
    seeds = tqdm(seeds)

    Xs = np.empty((num_seeds, num_evaluations, blackbox.input_dim))
    Xs[:] = np.nan
    ys = np.empty((num_seeds, num_evaluations, blackbox.output_dim))
    ys[:] = np.nan

    for seed in seeds:
        try:
            set_seed(seed)
            optimizer = optimizer_factory()
            for i in range(num_evaluations):
                x = optimizer.sample(candidates)
                y = blackbox(x)
                if verbose:
                    logging.info(f"criterion {y} for arguments {x}")
                optimizer.observe(x=x, y=y)
                Xs[seed, i] = x
                ys[seed, i] = y
                # memory leaks without gc, not sure why, perhaps a reference cycle
                gc.collect()
            del optimizer
        except Exception:
            print("seed evaluation failed")
            traceback.print_exc(file=sys.stdout)
            pass
    return Xs, ys
Beispiel #2
0
def test_blackbox_works_with_optimization(blackbox: Blackbox):
    logging.basicConfig(level=logging.INFO)
    seed = 3
    num_evaluations = 5
    optimizer_cls = RS

    set_seed(seed)

    optimizer = optimizer_cls(
        input_dim=blackbox.input_dim,
        output_dim=blackbox.output_dim,
        evaluations_other_tasks=Xy_train,
    )

    candidates = X_test

    for i in range(num_evaluations):
        x = optimizer.sample(candidates)
        y = blackbox(x)
        logging.info(f"criterion {y} for arguments {x}")
        optimizer.observe(x=x, y=y)
Beispiel #3
0
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', default='0', type=str)
parser.add_argument('--dataset', default='cifar10', type=str)
parser.add_argument('--arch', '-a', default='vgg16_bn', type=str)
parser.add_argument('--sparsity_level', '-s', default=0.2, type=float)
parser.add_argument('--lr', default=0.01, type=float)
parser.add_argument('--lambd', default=0.5, type=float)
parser.add_argument('--epochs', default=10, type=int)
parser.add_argument('--log_interval', default=100, type=int)
parser.add_argument('--train_batch_size', default=128, type=int)
parser.add_argument('--expanded_inchannel', '-e', default=80, type=int)
parser.add_argument('--seed', default=None, type=int)

args = parser.parse_args()
args.seed = misc.set_seed(args.seed)
args.num_classes = 10

args.device = 'cuda'
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu

args.logdir = 'seed-%d/%s-%s/channel-%d-sparsity-%.2f' % (
    args.seed, args.dataset, args.arch, args.expanded_inchannel,
    args.sparsity_level)

misc.prepare_logging(args)

print('==> Preparing data..')

transform_train = transforms.Compose([
    transforms.RandomCrop(32, padding=4),
Beispiel #4
0
def main():
    print(f'\n=== cuda is {"" if using_gpu() else "NOT"} available ===\n')

    data_root = os.path.abspath(
        os.path.join(os.path.expanduser('~'), 'datasets', 'mnist'))
    set_seed(0)

    # hyper-parameters:
    BASIC_LR = 5e-4
    MIN_LR = 0.
    WEIGHT_DECAY = 1e-5
    OP_MOMENTUM = 0.9
    EPOCHS = 8
    BATCH_SIZE = 64
    DROP_OUT_RATE = 0.1
    train_loader, test_loader = get_dataloaders(data_root=data_root,
                                                batch_size=BATCH_SIZE)
    ITERS = len(train_loader)
    print(f'=== hyper-params ===\n'
          f'  epochs={EPOCHS}\n'
          f'  train iters={ITERS}\n'
          f'  batch size={BATCH_SIZE}\n'
          f'  cosine lr:{BASIC_LR} -> {MIN_LR}\n'
          f'  weight decay={WEIGHT_DECAY}\n'
          f'  momentum={OP_MOMENTUM}\n'
          f'  drop out={DROP_OUT_RATE}\n')

    set_seed(0)
    net = FCNet(input_dim=MNIST_img_ch * MNIST_img_size**2,
                output_dim=MNIST_num_classes,
                dropout_p=DROP_OUT_RATE)
    init_params(net, verbose=True)
    if using_gpu():
        net = net.cuda()

    print('=== start training from scratch ===\n')

    train_accs, test_accs = [], []
    train_losses, test_losses = [], []
    lrs = []
    recorders = (test_accs, test_losses, train_accs, train_losses, lrs)

    set_seed(0)
    optimizer = SGD(net.parameters(),
                    lr=BASIC_LR,
                    weight_decay=WEIGHT_DECAY,
                    momentum=OP_MOMENTUM)
    scheduler = CosineAnnealingLR(optimizer,
                                  T_max=EPOCHS * ITERS,
                                  eta_min=MIN_LR)
    components = (net, optimizer, scheduler)

    set_seed(0)
    for epoch in range(EPOCHS):
        train_epoch(epoch, ITERS, EPOCHS, train_loader, test_loader,
                    components, recorders)

    final_test_acc, _ = test(test_loader, net)
    print(f'\n=== final test acc: {final_test_acc:.2f} ===\n')

    plot_curves(train_accs, test_accs, train_losses, test_losses, lrs)
Beispiel #5
0
    def _observe(self, x: np.array, y: np.array):
        # remark, we could fit the GP there so that sampling several times avoid the cost of refitting the GP
        self.X_observed = torch.cat(
            (self.X_observed, torch.Tensor(x).unsqueeze(dim=0)), dim=0)
        self.y_observed = torch.cat(
            (self.y_observed, torch.Tensor(y).unsqueeze(dim=0)), dim=0)


if __name__ == '__main__':
    logging.basicConfig(level=logging.INFO)
    num_evaluations = 10

    Xy_train, X_test, y_test = artificial_task1(seed=0)

    print(y_test[0])
    set_seed(0)

    blackbox = BlackboxOffline(
        X=X_test,
        y=y_test,
    )

    optimizer = GP(
        input_dim=blackbox.input_dim,
        output_dim=blackbox.output_dim,
    )

    candidates = X_test

    for i in range(num_evaluations):
        #x = optimizer.sample(candidates)