Beispiel #1
0
def test_find_optimal_representation_no_superoperator_error():
    q = LineQubit(0)
    # Define noisy operation without superoperator matrix
    noisy_op = NoisyOperation(Circuit(X(q)))
    noisy_basis = NoisyBasis(noisy_op)
    with raises(ValueError, match="numerical superoperator matrix"):
        find_optimal_representation(Circuit(X(q)), noisy_basis)
Beispiel #2
0
def test_find_optimal_representation_depolarizing_two_qubit_gates(circ_type):
    """Test optimal representation agrees with a known analytic result."""
    for ideal_gate, noise_level in product([CNOT, CZ], [0.1, 0.5]):
        q = LineQubit.range(2)
        ideal_op = Circuit(ideal_gate(*q))
        implementable_circuits = [Circuit(ideal_op)]
        # Append two-qubit-gate with Paulis on one qubit
        for gate in [X, Y, Z]:
            implementable_circuits.append(Circuit([ideal_op, gate(q[0])]))
            implementable_circuits.append(Circuit([ideal_op, gate(q[1])]))
        # Append two-qubit gate with Paulis on both qubits
        for gate_a, gate_b in product([X, Y, Z], repeat=2):
            implementable_circuits.append(
                Circuit([ideal_op, gate_a(q[0]), gate_b(q[1])])
            )
        noisy_circuits = [
            circ + Circuit(DepolarizingChannel(noise_level).on_each(*q))
            for circ in implementable_circuits
        ]
        super_operators = [
            choi_to_super(_circuit_to_choi(circ)) for circ in noisy_circuits
        ]

        # Define circuits with native types
        implementable_native = [
            convert_from_mitiq(c, circ_type) for c in implementable_circuits
        ]
        ideal_op_native = convert_from_mitiq(ideal_op, circ_type)

        noisy_operations = [
            NoisyOperation(ideal, real)
            for ideal, real in zip(implementable_native, super_operators)
        ]

        # Find optimal representation
        noisy_basis = NoisyBasis(*noisy_operations)
        rep = find_optimal_representation(
            ideal_op_native, noisy_basis, tol=1.0e-8
        )
        # Expected analytical result
        expected_rep = represent_operation_with_local_depolarizing_noise(
            ideal_op_native,
            noise_level,
        )
        assert np.allclose(np.sort(rep.coeffs), np.sort(expected_rep.coeffs))
        assert rep == expected_rep
Beispiel #3
0
def test_find_optimal_representation_single_qubit_amp_damping(circ_type):
    """Test optimal representation of agrees with a known analytic result."""
    for ideal_gate, noise_level in product([X, Y, H], [0.1, 0.3]):
        q = LineQubit(0)

        ideal_op = Circuit(ideal_gate(q))
        implementable_circuits = [Circuit(ideal_op)]
        # Add ideal gate followed by Paulis and reset
        for gate in [Z, reset]:
            implementable_circuits.append(Circuit([ideal_op, gate(q)]))

        noisy_circuits = [
            circ + Circuit(AmplitudeDampingChannel(noise_level).on_each(q))
            for circ in implementable_circuits
        ]

        super_operators = [
            choi_to_super(_circuit_to_choi(circ)) for circ in noisy_circuits
        ]

        # Define circuits with native types
        implementable_native = [
            convert_from_mitiq(c, circ_type) for c in implementable_circuits
        ]
        ideal_op_native = convert_from_mitiq(ideal_op, circ_type)

        noisy_operations = [
            NoisyOperation(ideal, real)
            for ideal, real in zip(implementable_native, super_operators)
        ]
        # Find optimal representation
        noisy_basis = NoisyBasis(*noisy_operations)
        rep = find_optimal_representation(
            ideal_op_native, noisy_basis, tol=1.0e-7, initial_guess=[0, 0, 0]
        )
        # Expected analytical result
        expected_rep = _represent_operation_with_amplitude_damping_noise(
            ideal_op_native,
            noise_level,
        )
        assert np.allclose(np.sort(rep.coeffs), np.sort(expected_rep.coeffs))
        assert rep == expected_rep