def test_preprocessing_network(self):
        feature_value_map = read_data()

        normalization_parameters = {}
        name_preprocessed_blob_map = {}

        for feature_name, feature_values in feature_value_map.items():
            normalization_parameters[feature_name] = normalization.identify_parameter(
                feature_values, feature_type=self._feature_type_override(feature_name)
            )
            feature_values[
                0
            ] = MISSING_VALUE  # Set one entry to MISSING_VALUE to test that

            preprocessor = Preprocessor(
                {feature_name: normalization_parameters[feature_name]}, False
            )
            preprocessor.clamp = False
            feature_values_matrix = np.expand_dims(feature_values, -1)
            normalized_feature_values = preprocessor.forward(feature_values_matrix)
            name_preprocessed_blob_map[feature_name] = normalized_feature_values.numpy()

        test_features = self.preprocess(feature_value_map, normalization_parameters)

        for feature_name in feature_value_map:
            normalized_features = name_preprocessed_blob_map[feature_name]
            if feature_name != ENUM_FEATURE_ID:
                normalized_features = np.squeeze(normalized_features, -1)

            tolerance = 0.01
            if feature_name == BOXCOX_FEATURE_ID:
                # At the limit, boxcox has some numerical instability
                tolerance = 0.5
            non_matching = np.where(
                np.logical_not(
                    np.isclose(
                        normalized_features.flatten(),
                        test_features[feature_name].flatten(),
                        rtol=tolerance,
                        atol=tolerance,
                    )
                )
            )
            self.assertTrue(
                np.all(
                    np.isclose(
                        normalized_features.flatten(),
                        test_features[feature_name].flatten(),
                        rtol=tolerance,
                        atol=tolerance,
                    )
                ),
                "{} does not match: {} \n!=\n {}".format(
                    feature_name,
                    normalized_features.flatten()[non_matching],
                    test_features[feature_name].flatten()[non_matching],
                ),
            )
    def test_preprocessing_network(self):
        features, feature_value_map = preprocessing_util.read_data()
        normalization_parameters = {}
        name_preprocessed_blob_map = {}

        for feature_name, feature_values in feature_value_map.items():
            normalization_parameters[feature_name] = normalization.identify_parameter(
                feature_values
            )

            preprocessor = Preprocessor(
                {feature_name: normalization_parameters[feature_name]}, False
            )
            preprocessor.clamp = False
            feature_values_matrix = np.expand_dims(feature_values, -1)
            normalized_feature_values = preprocessor.forward(feature_values_matrix)
            name_preprocessed_blob_map[feature_name] = normalized_feature_values.numpy()

        test_features = self.preprocess(feature_value_map, normalization_parameters)

        for feature_name in feature_value_map:
            normalized_features = name_preprocessed_blob_map[feature_name]
            if feature_name != identify_types.ENUM:
                normalized_features = np.squeeze(normalized_features, -1)

            tolerance = 0.01
            if feature_name == BOXCOX:
                # At the limit, boxcox has some numerical instability
                tolerance = 0.5
            non_matching = np.where(
                np.logical_not(
                    np.isclose(
                        normalized_features,
                        test_features[feature_name],
                        rtol=tolerance,
                        atol=tolerance,
                    )
                )
            )
            self.assertTrue(
                np.all(
                    np.isclose(
                        normalized_features,
                        test_features[feature_name],
                        rtol=tolerance,
                        atol=tolerance,
                    )
                ),
                "{} does not match: {} {}".format(
                    feature_name,
                    normalized_features[non_matching].tolist()[0:10],
                    test_features[feature_name][non_matching].tolist()[0:10],
                ),
            )
    def test_normalize_dense_matrix_enum(self):
        normalization_parameters = {
            1:
            NormalizationParameters(
                identify_types.ENUM,
                None,
                None,
                None,
                None,
                [12, 4, 2],
                None,
                None,
                None,
            ),
            2:
            NormalizationParameters(identify_types.CONTINUOUS, None, 0, 0, 1,
                                    None, None, None, None),
            3:
            NormalizationParameters(identify_types.ENUM, None, None, None,
                                    None, [15, 3], None, None, None),
        }
        preprocessor = Preprocessor(normalization_parameters, False)
        preprocessor.clamp = False

        inputs = np.zeros([4, 3], dtype=np.float32)
        feature_ids = [2, 1, 3]  # Sorted according to feature type
        inputs[:, feature_ids.index(1)] = [12, 4, 2, 2]
        inputs[:, feature_ids.index(2)] = [1.0, 2.0, 3.0, 3.0]
        inputs[:, feature_ids.index(3)] = [
            15, 3, 15, normalization.MISSING_VALUE
        ]
        normalized_feature_matrix = preprocessor.forward(inputs)

        np.testing.assert_allclose(
            np.array([
                [1.0, 1, 0, 0, 1, 0],
                [2.0, 0, 1, 0, 0, 1],
                [3.0, 0, 0, 1, 1, 0],
                [3.0, 0, 0, 1, 0, 0],  # Missing values should go to all 0
            ]),
            normalized_feature_matrix,
        )
    def test_prepare_normalization_and_normalize(self):
        feature_value_map = read_data()

        normalization_parameters = {}
        for name, values in feature_value_map.items():
            normalization_parameters[name] = normalization.identify_parameter(
                values, 10, feature_type=self._feature_type_override(name)
            )
        for k, v in normalization_parameters.items():
            if id_to_type(k) == CONTINUOUS:
                self.assertEqual(v.feature_type, CONTINUOUS)
                self.assertIs(v.boxcox_lambda, None)
                self.assertIs(v.boxcox_shift, None)
            elif id_to_type(k) == BOXCOX:
                self.assertEqual(v.feature_type, BOXCOX)
                self.assertIsNot(v.boxcox_lambda, None)
                self.assertIsNot(v.boxcox_shift, None)
            else:
                assert v.feature_type == id_to_type(k)

        preprocessor = Preprocessor(normalization_parameters, False)
        sorted_features, _ = sort_features_by_normalization(normalization_parameters)
        preprocessor.clamp = False
        input_matrix = np.zeros([10000, len(sorted_features)], dtype=np.float32)
        for i, feature in enumerate(sorted_features):
            input_matrix[:, i] = feature_value_map[feature]
        normalized_feature_matrix = preprocessor.forward(input_matrix)

        normalized_features = {}
        on_column = 0
        for feature in sorted_features:
            norm = normalization_parameters[feature]
            if norm.feature_type == ENUM:
                column_size = len(norm.possible_values)
            else:
                column_size = 1
            normalized_features[feature] = normalized_feature_matrix[
                :, on_column : (on_column + column_size)
            ]
            on_column += column_size

        self.assertTrue(
            all(
                [
                    np.isfinite(parameter.stddev) and np.isfinite(parameter.mean)
                    for parameter in normalization_parameters.values()
                ]
            )
        )
        for k, v in six.iteritems(normalized_features):
            v = v.numpy()
            self.assertTrue(np.all(np.isfinite(v)))
            feature_type = normalization_parameters[k].feature_type
            if feature_type == identify_types.PROBABILITY:
                sigmoidv = special.expit(v)
                self.assertTrue(
                    np.all(
                        np.logical_and(np.greater(sigmoidv, 0), np.less(sigmoidv, 1))
                    )
                )
            elif feature_type == identify_types.ENUM:
                possible_values = normalization_parameters[k].possible_values
                self.assertEqual(v.shape[0], len(feature_value_map[k]))
                self.assertEqual(v.shape[1], len(possible_values))

                possible_value_map = {}
                for i, possible_value in enumerate(possible_values):
                    possible_value_map[possible_value] = i

                for i, row in enumerate(v):
                    original_feature = feature_value_map[k][i]
                    if abs(original_feature - MISSING_VALUE) < 0.01:
                        self.assertEqual(0.0, np.sum(row))
                    else:
                        self.assertEqual(
                            possible_value_map[original_feature],
                            np.where(row == 1)[0][0],
                        )
            elif feature_type == identify_types.QUANTILE:
                for i, feature in enumerate(v[0]):
                    original_feature = feature_value_map[k][i]
                    expected = self._value_to_quantile(
                        original_feature, normalization_parameters[k].quantiles
                    )
                    self.assertAlmostEqual(feature, expected, 2)
            elif feature_type == identify_types.BINARY:
                pass
            elif (
                feature_type == identify_types.CONTINUOUS
                or feature_type == identify_types.BOXCOX
            ):
                one_stddev = np.isclose(np.std(v, ddof=1), 1, atol=0.01)
                zero_stddev = np.isclose(np.std(v, ddof=1), 0, atol=0.01)
                zero_mean = np.isclose(np.mean(v), 0, atol=0.01)
                self.assertTrue(
                    np.all(zero_mean),
                    "mean of feature {} is {}, not 0".format(k, np.mean(v)),
                )
                self.assertTrue(np.all(np.logical_or(one_stddev, zero_stddev)))
            elif feature_type == identify_types.CONTINUOUS_ACTION:
                less_than_max = v < 1
                more_than_min = v > -1
                self.assertTrue(
                    np.all(less_than_max),
                    "values are not less than 1: {}".format(v[less_than_max == False]),
                )
                self.assertTrue(
                    np.all(more_than_min),
                    "values are not more than -1: {}".format(v[more_than_min == False]),
                )
            else:
                raise NotImplementedError()