Beispiel #1
0
 def test_dqn_workflow(self):
     """Run DQN workflow to ensure no crashes, algorithm correctness
     not tested here."""
     params = {
         "training_data_path":
         os.path.join(
             curr_dir,
             "test_data/discrete_action/cartpole_training_data.json"),
         "state_norm_data_path":
         os.path.join(curr_dir,
                      "test_data/discrete_action/cartpole_norm.json"),
         "model_output_path":
         None,
         "use_gpu":
         False,
         "actions": ["0", "1"],
         "epochs":
         1,
         "rl": {},
         "rainbow": {},
         "training": {
             "minibatch_size": 16
         },
         "in_training_cpe":
         None,
     }
     predictor = dqn_workflow.train_network(params)
     test_float_state_features = [{"0": 1.0, "1": 1.0, "2": 1.0, "3": 1.0}]
     q_values = predictor.predict(test_float_state_features)
     assert len(q_values[0].keys()) == 2
Beispiel #2
0
 def _test_dqn_workflow(self, use_gpu=False, use_all_avail_gpus=False):
     """Run DQN workflow to ensure no crashes, algorithm correctness
     not tested here."""
     with tempfile.TemporaryDirectory() as tmpdirname:
         params = {
             "training_data_path": os.path.join(
                 curr_dir, "test_data/discrete_action/cartpole_training.json.bz2"
             ),
             "eval_data_path": os.path.join(
                 curr_dir, "test_data/discrete_action/cartpole_eval.json.bz2"
             ),
             "state_norm_data_path": os.path.join(
                 curr_dir, "test_data/discrete_action/cartpole_norm.json"
             ),
             "model_output_path": tmpdirname,
             "use_gpu": use_gpu,
             "use_all_avail_gpus": use_all_avail_gpus,
             "actions": ["0", "1"],
             "epochs": 1,
             "rl": {},
             "rainbow": {},
             "training": {"minibatch_size": 128},
         }
         predictor = dqn_workflow.train_network(params)
         test_float_state_features = [{"0": 1.0, "1": 1.0, "2": 1.0, "3": 1.0}]
         q_values = predictor.predict(test_float_state_features)
     assert len(q_values[0].keys()) == 2