Beispiel #1
0
    def create(model_id: int, payload: dict) -> int:
        """
        Validate and add predictions from a model to the database
        :params model_id, payload

        :raises DataError
        :returns ID of the prediction
        """

        version = payload['version']
        try:
            semver.VersionInfo.parse(version)
        except Exception as e:
            raise "Version Must be SemVer"

        prediction_dto = PredictionDTO()
        prediction_dto.model_id = model_id
        prediction_dto.version = payload['version']
        prediction_dto.tile_zoom = payload['tileZoom']
        prediction_dto.inf_list = payload['infList']
        prediction_dto.inf_type = payload['infType']
        prediction_dto.inf_binary = payload['infBinary']
        prediction_dto.inf_supertile = payload['infSupertile']
        prediction_dto.validate()

        new_prediction = Prediction()
        try:
            new_prediction.create(prediction_dto)
        except sqlalchemy.exc.IntegrityError as e:
            if isinstance(e.orig, UniqueViolation):
                raise VersionExists
            else:
                raise e

        return new_prediction.id
Beispiel #2
0
    def get(model_id: int, bbox: list, latest=False):
        """
        Fetch latest predictions from a model for the given bbox
        :params model_id, bbox

        :raises PredictionsNotFound
        :returns predictions
        """

        if (latest):
            # get the latest version
            latest_version = MLModelVersion.get_latest_version(model_id)
            if (latest_version is None):
                raise PredictionsNotFound('Predictions not found')
            else:
                version_id = latest_version.id
                predictions = Prediction.get_latest_predictions_in_bbox(
                    model_id, version_id, bbox)
        else:
            predictions = Prediction.get_all_predictions_in_bbox(
                model_id, bbox)

        if (len(predictions) == 0):
            raise PredictionsNotFound('Predictions not found')

        data = []
        for prediction in predictions:
            prediction_dto = Prediction.as_dto(prediction)
            data.append(prediction_dto.to_primitive())

        return data
Beispiel #3
0
    def get_prediction_by_id(prediction_id: int):
        """
        Get a prediction by ID
        :params prediction_id
        :returns prediction
        """

        prediction = Prediction.get(prediction_id)
        if prediction:
            return Prediction.as_dto(prediction)
        else:
            raise PredictionsNotFound
Beispiel #4
0
    def get_all_by_model(model_id: int):
        """
        Fetch all predictions of the given model
        :params model_id
        :returns predictions
        :raises PredictionsNotFound
        """
        predictions = Prediction.get_predictions_by_model(model_id)
        prediction_dtos = []
        for prediction in predictions:
            prediction_dtos.append(Prediction.as_dto(prediction).to_primitive())

        return prediction_dtos
Beispiel #5
0
    def export(prediction_id: int):
        prediction = Prediction.get(prediction_id)

        if (prediction):
            stream = prediction.export()

            return stream
        else:
            raise NotFound('Prediction does not exist')
Beispiel #6
0
    def create(model_id: int, version_id: int, payload: dict) -> int:
        """
        Validate and add predictions from a model to the database
        :params model_id, version_id, payload

        :raises DataError
        :returns ID of the prediction
        """

        prediction_dto = PredictionDTO()
        prediction_dto.model_id = model_id
        prediction_dto.version_id = version_id
        prediction_dto.bbox = payload['bbox']
        prediction_dto.tile_zoom = payload['tileZoom']
        prediction_dto.validate()

        new_prediction = Prediction()
        new_prediction.create(prediction_dto)
        return new_prediction.id
Beispiel #7
0
    def tilejson(model_id, prediction_id):
        """
        Get the TileJSON of the prediction id given

        :params model_id
        :params prediction_id
        :returns dict
        """

        tiles = PredictionTile.count(prediction_id)

        if tiles.count == 0:
            raise PredictionsNotFound('No Prediction Tiles exist')

        ml_model = MLModel.get(model_id)
        prediction = Prediction.get(prediction_id)

        tilejson = {
            "tilejson":
            "2.1.0",
            "name":
            ml_model.name,
            "description":
            ml_model.project_url,
            "inferences":
            PredictionTile.inferences(prediction_id),
            "token":
            CONFIG.EnvironmentConfig.MAPBOX_TOKEN,
            "attribution":
            ml_model.source,
            "version":
            prediction.version,
            "scheme":
            "xyz",
            "type":
            "vector",
            "tiles": [
                "/v1/model/{0}/prediction/{1}/tiles/{{z}}/{{x}}/{{y}}.mvt".
                format(model_id, prediction_id)
            ],
            "minzoom":
            0,
            "maxzoom":
            prediction.tile_zoom,
            "bounds":
            PredictionTile.bbox(prediction_id)
        }

        return tilejson
Beispiel #8
0
    def patch(prediction_id: int, update: dict) -> int:
        """
        Patch a prediction by ID
        :params prediction_id
        :params update
        :returns prediction
        """

        prediction = Prediction.get(prediction_id)

        if (prediction):
            prediction.link(update)

            return prediction_id
        else:
            raise NotFound('Prediction does not exist')