def _train(self):
        # Initialize model with zeros
        y_pred = np.zeros(self.n_samples, np.float32)
        # Or mean
        # y_pred = np.full(self.n_samples, self.y_mean)

        for n in range(self.n_estimators):
            residuals = self.loss.grad(self.y, y_pred)
            tree = Tree(regression=True, criterion=mse_criterion)
            # Pass multiple target values to the tree learner
            targets = {
                # Residual values
                'y': residuals,
                # Actual target values
                'actual': self.y,
                # Predictions from previous step
                'y_pred': y_pred
            }
            tree.train(self.X,
                       targets,
                       max_features=self.max_features,
                       min_samples_split=self.min_samples_split,
                       max_depth=self.max_depth,
                       loss=self.loss)
            predictions = tree.predict(self.X)
            y_pred += self.learning_rate * predictions
            self.trees.append(tree)
    def __init__(self, n_estimators=10, max_features=None, min_samples_split=10, max_depth=None, criterion='mse'):
        super(RandomForestRegressor, self).__init__(n_estimators=n_estimators, max_features=max_features,
                                                    min_samples_split=min_samples_split, max_depth=max_depth)

        if criterion == 'mse':
            self.criterion = mse_criterion
        else:
            raise ValueError()

        # Initialize empty regression trees
        for _ in range(self.n_estimators):
            self.trees.append(Tree(regression=True, criterion=self.criterion))
    def __init__(self, n_estimators=10, max_features=None, min_samples_split=10, max_depth=None, criterion='entropy'):
        super(RandomForestClassifier, self).__init__(n_estimators=n_estimators, max_features=max_features,
                                                     min_samples_split=min_samples_split, max_depth=max_depth,
                                                     criterion=criterion)

        if criterion == 'entropy':
            self.criterion = information_gain
        else:
            raise ValueError()

        # Initialize empty trees
        for _ in range(self.n_estimators):
            self.trees.append(Tree(criterion=self.criterion))
Beispiel #4
0
    def _train(self):
        # Initialize model with zeros
        y_pred = np.zeros(self.n_samples, np.float32)
        # Or mean
        # y_pred = np.full(self.n_samples, self.y_mean)

        for n in range(self.n_estimators):
            residuals = self.loss.grad(self.y, y_pred)
            tree = Tree(regression=True, criterion=mse_criterion)
            # Pass multiple target values to the tree learner
            targets = {
                # Residual values
                'y': residuals,
                # Actual target values
                'actual': self.y,
                # Predictions from previous step
                'y_pred': y_pred
            }
            tree.train(self.X, targets, max_features=self.max_features,
                       min_samples_split=self.min_samples_split, max_depth=self.max_depth, loss=self.loss)
            predictions = tree.predict(self.X)
            y_pred += self.learning_rate * predictions
            self.trees.append(tree)