def _predict(self, X=None):
        # Apply _predict_proba for each row
        predictions = np.apply_along_axis(self._predict_row, 1, X)

        # Normalize probabilities so that each row will sum up to 1.0
        return softmax(predictions)
Beispiel #2
0
    def _predict(self, X=None):
        # Apply _predict_proba for each row
        predictions = np.apply_along_axis(self._predict_row, 1, X)

        # Normalize probabilities so that each row will sum up to 1.0
        return softmax(predictions)
Beispiel #3
0
 def _predict(self, X=None):
     # Apply _predict_proba for each row
     predictions = np.apply_along_axis(self._predict_proba, 1, X)
     # Normalize probabilities
     return softmax(predictions)