Beispiel #1
0
def batched_step_result_from_proto(
    agent_info_list: Collection[
        AgentInfoProto
    ],  # pylint: disable=unsubscriptable-object
    group_spec: AgentGroupSpec,
) -> BatchedStepResult:
    obs_list: List[np.ndarray] = []
    for obs_index, obs_shape in enumerate(group_spec.observation_shapes):
        is_visual = len(obs_shape) == 3
        if is_visual:
            obs_shape = cast(Tuple[int, int, int], obs_shape)
            obs_list += [
                _process_visual_observation(obs_index, obs_shape, agent_info_list)
            ]
        else:
            obs_list += [
                _process_vector_observation(obs_index, obs_shape, agent_info_list)
            ]
    rewards = np.array(
        [agent_info.reward for agent_info in agent_info_list], dtype=np.float32
    )

    d = np.dot(rewards, rewards)
    has_nan = np.isnan(d)
    has_inf = not np.isfinite(d)
    # In we have any NaN or Infs, use np.nan_to_num to replace these with finite values
    if has_nan or has_inf:
        rewards = np.nan_to_num(rewards)
    if has_nan:
        logger.warning(f"An agent had a NaN reward in the environment")

    done = np.array([agent_info.done for agent_info in agent_info_list], dtype=np.bool)
    max_step = np.array(
        [agent_info.max_step_reached for agent_info in agent_info_list], dtype=np.bool
    )
    agent_id = np.array(
        [agent_info.id for agent_info in agent_info_list], dtype=np.int32
    )
    action_mask = None
    if group_spec.is_action_discrete():
        if any([agent_info.action_mask is not None] for agent_info in agent_info_list):
            n_agents = len(agent_info_list)
            a_size = np.sum(group_spec.discrete_action_branches)
            mask_matrix = np.ones((n_agents, a_size), dtype=np.bool)
            for agent_index, agent_info in enumerate(agent_info_list):
                if agent_info.action_mask is not None:
                    if len(agent_info.action_mask) == a_size:
                        mask_matrix[agent_index, :] = [
                            False if agent_info.action_mask[k] else True
                            for k in range(a_size)
                        ]
            action_mask = (1 - mask_matrix).astype(np.bool)
            indices = _generate_split_indices(group_spec.discrete_action_branches)
            action_mask = np.split(action_mask, indices, axis=1)
    return BatchedStepResult(obs_list, rewards, done, max_step, agent_id, action_mask)
def step_result_to_brain_info(
    step_result: BatchedStepResult,
    group_spec: AgentGroupSpec,
    agent_id_prefix: int = None,
) -> BrainInfo:
    n_agents = step_result.n_agents()
    vis_obs_indices = []
    vec_obs_indices = []
    for index, observation in enumerate(step_result.obs):
        if len(observation.shape) == 2:
            vec_obs_indices.append(index)
        elif len(observation.shape) == 4:
            vis_obs_indices.append(index)
        else:
            raise UnityEnvironmentException(
                "Invalid input received from the environment, the observation should "
                "either be a vector of float or a PNG image")
    if len(vec_obs_indices) == 0:
        vec_obs = np.zeros((n_agents, 0), dtype=np.float32)
    else:
        vec_obs = np.concatenate([step_result.obs[i] for i in vec_obs_indices],
                                 axis=1)
    vis_obs = [step_result.obs[i] for i in vis_obs_indices]
    mask = np.ones((n_agents, np.sum(group_spec.action_size)),
                   dtype=np.float32)
    if group_spec.is_action_discrete():
        mask = np.ones((n_agents, np.sum(group_spec.discrete_action_branches)),
                       dtype=np.float32)
        if step_result.action_mask is not None:
            mask = 1 - np.concatenate(step_result.action_mask, axis=1)
    if agent_id_prefix is None:
        agent_ids = [str(ag_id) for ag_id in list(step_result.agent_id)]
    else:
        agent_ids = [
            f"${agent_id_prefix}-{ag_id}" for ag_id in step_result.agent_id
        ]
    return BrainInfo(
        vis_obs,
        vec_obs,
        list(step_result.reward),
        agent_ids,
        list(step_result.done),
        list(step_result.max_step),
        mask,
    )
def group_spec_to_brain_parameters(
    name: str, group_spec: AgentGroupSpec
) -> BrainParameters:
    vec_size = np.sum(
        [shape[0] for shape in group_spec.observation_shapes if len(shape) == 1]
    )
    vis_sizes = [shape for shape in group_spec.observation_shapes if len(shape) == 3]
    cam_res = [CameraResolution(s[0], s[1], s[2]) for s in vis_sizes]
    a_size: List[int] = []
    if group_spec.is_action_discrete():
        a_size += list(group_spec.discrete_action_branches)
        vector_action_space_type = 0
    else:
        a_size += [group_spec.action_size]
        vector_action_space_type = 1
    return BrainParameters(
        name, int(vec_size), cam_res, a_size, [], vector_action_space_type
    )