Beispiel #1
0
    def create_encoder(
        self, state_in: tf.Tensor, action_in: tf.Tensor, done_in: tf.Tensor, reuse: bool
    ) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]:
        """
        Creates the encoder for the discriminator
        :param state_in: The encoded observation input
        :param action_in: The action input
        :param done_in: The done flags input
        :param reuse: If true, the weights will be shared with the previous encoder created
        """
        with tf.variable_scope("GAIL_model"):
            if self.use_actions:
                concat_input = tf.concat([state_in, action_in, done_in], axis=1)
            else:
                concat_input = state_in

            hidden_1 = tf.layers.dense(
                concat_input,
                self.h_size,
                activation=LearningModel.swish,
                name="gail_d_hidden_1",
                reuse=reuse,
            )

            hidden_2 = tf.layers.dense(
                hidden_1,
                self.h_size,
                activation=LearningModel.swish,
                name="gail_d_hidden_2",
                reuse=reuse,
            )

            z_mean = None
            if self.use_vail:
                # Latent representation
                z_mean = tf.layers.dense(
                    hidden_2,
                    self.z_size,
                    reuse=reuse,
                    name="gail_z_mean",
                    kernel_initializer=LearningModel.scaled_init(0.01),
                )

                self.noise = tf.random_normal(tf.shape(z_mean), dtype=tf.float32)

                # Sampled latent code
                self.z = z_mean + self.z_sigma * self.noise * self.use_noise
                estimate_input = self.z
            else:
                estimate_input = hidden_2

            estimate = tf.layers.dense(
                estimate_input,
                1,
                activation=tf.nn.sigmoid,
                name="gail_d_estimate",
                reuse=reuse,
            )
            return estimate, z_mean, concat_input
Beispiel #2
0
    def create_cc_actor(self, hidden_policy, scope):
        """
        Creates Continuous control actor for SAC.
        :param hidden_policy: Output of feature extractor (i.e. the input for vector obs, output of CNN for visual obs).
        :param num_layers: TF scope to assign whatever is created in this block.
        """
        # Create action input (continuous)
        self.action_holder = tf.placeholder(shape=[None, self.act_size[0]],
                                            dtype=tf.float32,
                                            name="action_holder")
        self.external_action_in = self.action_holder

        scope = self.join_scopes(scope, "policy")

        with tf.variable_scope(scope):
            hidden_policy = self.create_vector_observation_encoder(
                hidden_policy,
                self.h_size,
                self.activ_fn,
                self.num_layers,
                "encoder",
                False,
            )
        if self.use_recurrent:
            hidden_policy, memory_out = self.create_recurrent_encoder(
                hidden_policy,
                self.policy_memory_in,
                self.sequence_length,
                name="lstm_policy",
            )
            self.policy_memory_out = memory_out
        with tf.variable_scope(scope):
            mu = tf.layers.dense(
                hidden_policy,
                self.act_size[0],
                activation=None,
                name="mu",
                kernel_initializer=LearningModel.scaled_init(0.01),
            )

            # Policy-dependent log_sigma_sq
            log_sigma_sq = tf.layers.dense(
                hidden_policy,
                self.act_size[0],
                activation=None,
                name="log_std",
                kernel_initializer=LearningModel.scaled_init(0.01),
            )

            self.log_sigma_sq = tf.clip_by_value(log_sigma_sq, LOG_STD_MIN,
                                                 LOG_STD_MAX)

            sigma_sq = tf.exp(self.log_sigma_sq)

            # Do the reparameterization trick
            policy_ = mu + tf.random_normal(tf.shape(mu)) * sigma_sq

            _gauss_pre = -0.5 * (((policy_ - mu) /
                                  (tf.exp(self.log_sigma_sq) + EPSILON))**2 +
                                 2 * self.log_sigma_sq + np.log(2 * np.pi))

            all_probs = tf.reduce_sum(_gauss_pre, axis=1, keepdims=True)

            self.entropy = tf.reduce_sum(self.log_sigma_sq +
                                         0.5 * np.log(2.0 * np.pi * np.e),
                                         axis=-1)

            # Squash probabilities
            # Keep deterministic around in case we want to use it.
            self.deterministic_output = tf.tanh(mu)

            # Note that this is just for symmetry with PPO.
            self.output_pre = tf.tanh(policy_)

            # Squash correction
            all_probs -= tf.reduce_sum(tf.log(1 - self.output_pre**2 +
                                              EPSILON),
                                       axis=1,
                                       keepdims=True)

            self.all_log_probs = all_probs
            self.selected_actions = tf.stop_gradient(self.output_pre)

            self.action_probs = all_probs

        # Extract output for Barracuda
        self.output = tf.identity(self.output_pre, name="action")

        # Get all policy vars
        self.policy_vars = self.get_vars(scope)
Beispiel #3
0
    def create_cc_actor_critic(self, h_size: int, num_layers: int,
                               vis_encode_type: EncoderType) -> None:
        """
        Creates Continuous control actor-critic model.
        :param h_size: Size of hidden linear layers.
        :param num_layers: Number of hidden linear layers.
        """
        hidden_streams = self.create_observation_streams(
            2, h_size, num_layers, vis_encode_type)

        if self.use_recurrent:
            self.memory_in = tf.placeholder(shape=[None, self.m_size],
                                            dtype=tf.float32,
                                            name="recurrent_in")
            _half_point = int(self.m_size / 2)
            hidden_policy, memory_policy_out = self.create_recurrent_encoder(
                hidden_streams[0],
                self.memory_in[:, :_half_point],
                self.sequence_length,
                name="lstm_policy",
            )

            hidden_value, memory_value_out = self.create_recurrent_encoder(
                hidden_streams[1],
                self.memory_in[:, _half_point:],
                self.sequence_length,
                name="lstm_value",
            )
            self.memory_out = tf.concat([memory_policy_out, memory_value_out],
                                        axis=1,
                                        name="recurrent_out")
        else:
            hidden_policy = hidden_streams[0]
            hidden_value = hidden_streams[1]

        mu = tf.layers.dense(
            hidden_policy,
            self.act_size[0],
            activation=None,
            kernel_initializer=LearningModel.scaled_init(0.01),
            reuse=tf.AUTO_REUSE,
        )

        self.log_sigma_sq = tf.get_variable(
            "log_sigma_squared",
            [self.act_size[0]],
            dtype=tf.float32,
            initializer=tf.zeros_initializer(),
        )

        sigma_sq = tf.exp(self.log_sigma_sq)

        self.epsilon = tf.placeholder(shape=[None, self.act_size[0]],
                                      dtype=tf.float32,
                                      name="epsilon")
        # Clip and scale output to ensure actions are always within [-1, 1] range.
        self.output_pre = mu + tf.sqrt(sigma_sq) * self.epsilon
        output_post = tf.clip_by_value(self.output_pre, -3, 3) / 3
        self.output = tf.identity(output_post, name="action")
        self.selected_actions = tf.stop_gradient(output_post)

        # Compute probability of model output.
        all_probs = (-0.5 * tf.square(tf.stop_gradient(self.output_pre) - mu) /
                     sigma_sq - 0.5 * tf.log(2.0 * np.pi) -
                     0.5 * self.log_sigma_sq)

        self.all_log_probs = tf.identity(all_probs, name="action_probs")

        self.entropy = 0.5 * tf.reduce_mean(
            tf.log(2 * np.pi * np.e) + self.log_sigma_sq)

        self.create_value_heads(self.stream_names, hidden_value)

        self.all_old_log_probs = tf.placeholder(shape=[None, self.act_size[0]],
                                                dtype=tf.float32,
                                                name="old_probabilities")

        # We keep these tensors the same name, but use new nodes to keep code parallelism with discrete control.
        self.log_probs = tf.reduce_sum((tf.identity(self.all_log_probs)),
                                       axis=1,
                                       keepdims=True)
        self.old_log_probs = tf.reduce_sum(
            (tf.identity(self.all_old_log_probs)), axis=1, keepdims=True)
Beispiel #4
0
    def create_dc_actor_critic(self, h_size: int, num_layers: int,
                               vis_encode_type: EncoderType) -> None:
        """
        Creates Discrete control actor-critic model.
        :param h_size: Size of hidden linear layers.
        :param num_layers: Number of hidden linear layers.
        """
        hidden_streams = self.create_observation_streams(
            1, h_size, num_layers, vis_encode_type)
        hidden = hidden_streams[0]

        if self.use_recurrent:
            self.prev_action = tf.placeholder(shape=[None,
                                                     len(self.act_size)],
                                              dtype=tf.int32,
                                              name="prev_action")
            prev_action_oh = tf.concat(
                [
                    tf.one_hot(self.prev_action[:, i], self.act_size[i])
                    for i in range(len(self.act_size))
                ],
                axis=1,
            )
            hidden = tf.concat([hidden, prev_action_oh], axis=1)

            self.memory_in = tf.placeholder(shape=[None, self.m_size],
                                            dtype=tf.float32,
                                            name="recurrent_in")
            hidden, memory_out = self.create_recurrent_encoder(
                hidden, self.memory_in, self.sequence_length)
            self.memory_out = tf.identity(memory_out, name="recurrent_out")

        policy_branches = []
        for size in self.act_size:
            policy_branches.append(
                tf.layers.dense(
                    hidden,
                    size,
                    activation=None,
                    use_bias=False,
                    kernel_initializer=LearningModel.scaled_init(0.01),
                ))

        self.all_log_probs = tf.concat(policy_branches,
                                       axis=1,
                                       name="action_probs")

        self.action_masks = tf.placeholder(shape=[None,
                                                  sum(self.act_size)],
                                           dtype=tf.float32,
                                           name="action_masks")
        output, _, normalized_logits = self.create_discrete_action_masking_layer(
            self.all_log_probs, self.action_masks, self.act_size)

        self.output = tf.identity(output)
        self.normalized_logits = tf.identity(normalized_logits, name="action")

        self.create_value_heads(self.stream_names, hidden)

        self.action_holder = tf.placeholder(shape=[None,
                                                   len(policy_branches)],
                                            dtype=tf.int32,
                                            name="action_holder")
        self.action_oh = tf.concat(
            [
                tf.one_hot(self.action_holder[:, i], self.act_size[i])
                for i in range(len(self.act_size))
            ],
            axis=1,
        )
        self.selected_actions = tf.stop_gradient(self.action_oh)

        self.all_old_log_probs = tf.placeholder(
            shape=[None, sum(self.act_size)],
            dtype=tf.float32,
            name="old_probabilities")
        _, _, old_normalized_logits = self.create_discrete_action_masking_layer(
            self.all_old_log_probs, self.action_masks, self.act_size)

        action_idx = [0] + list(np.cumsum(self.act_size))

        self.entropy = tf.reduce_sum(
            (tf.stack(
                [
                    tf.nn.softmax_cross_entropy_with_logits_v2(
                        labels=tf.nn.softmax(
                            self.all_log_probs[:,
                                               action_idx[i]:action_idx[i +
                                                                        1]]),
                        logits=self.all_log_probs[:,
                                                  action_idx[i]:action_idx[i +
                                                                           1]],
                    ) for i in range(len(self.act_size))
                ],
                axis=1,
            )),
            axis=1,
        )

        self.log_probs = tf.reduce_sum(
            (tf.stack(
                [
                    -tf.nn.softmax_cross_entropy_with_logits_v2(
                        labels=self.action_oh[:,
                                              action_idx[i]:action_idx[i + 1]],
                        logits=normalized_logits[:,
                                                 action_idx[i]:action_idx[i +
                                                                          1]],
                    ) for i in range(len(self.act_size))
                ],
                axis=1,
            )),
            axis=1,
            keepdims=True,
        )
        self.old_log_probs = tf.reduce_sum(
            (tf.stack(
                [
                    -tf.nn.softmax_cross_entropy_with_logits_v2(
                        labels=self.action_oh[:,
                                              action_idx[i]:action_idx[i + 1]],
                        logits=old_normalized_logits[:, action_idx[i]:
                                                     action_idx[i + 1]],
                    ) for i in range(len(self.act_size))
                ],
                axis=1,
            )),
            axis=1,
            keepdims=True,
        )