Beispiel #1
0
    def test_dendrogram_plot(self):
        """
        Test if dendrogram plot object is correctly rendered.
        """

        herc = HierarchicalEqualRiskContribution()
        herc.allocate(asset_prices=self.data, optimal_num_clusters=5)
        dendrogram = herc.plot_clusters(assets=self.data.columns)
        assert dendrogram.get('icoord')
        assert dendrogram.get('dcoord')
        assert dendrogram.get('ivl')
        assert dendrogram.get('leaves')
        assert dendrogram.get('color_list')
class HierarchicalEqualRiskContributionStrategy(object):
    def __init__(self):

        # Get the data:
        self.loadDirectory = os.path.expandvars(
            '${HOME}/Desktop/quant-research-env/DARWINStrategyContentSeries/Data/ClosePricePortfolio.csv'
        )
        self.saveDirectory = os.path.expandvars(
            '${HOME}/Desktop/quant-research-env/DARWINStrategyContentSeries/OnlinePortfolioStrategies/_OPTIMIZATIONS/HERC/'
        )
        self.DF_CLOSE = self._loadTechnicalDataset()

    def _loadTechnicalDataset(self):

        # Load it:
        ASSET_UNIVERSE = pd.read_csv(self.loadDirectory,
                                     index_col=0,
                                     parse_dates=True,
                                     infer_datetime_format=True)
        print('¡Asset Universe file LOADED!')

        return ASSET_UNIVERSE

    def _generateAllocations(self):

        # Create object:
        self.STRATEGY = HierarchicalEqualRiskContribution()

        # Allocate:
        self.STRATEGY.allocate(
            asset_names=self.DF_CLOSE.columns,
            asset_prices=self.DF_CLOSE,
            #risk_measure='expected_shortfall',
            risk_measure='conditional_drawdown_risk',
            linkage='ward')

        # Plot portfolio metrics:
        self._plotOptimalPortfolio()
        self._plotClusters()

    def _plotOptimalPortfolio(self):

        print(
            f'Optimal number of clusters: {self.STRATEGY.optimal_num_clusters}'
        )

        # Get weights:
        weights = self.STRATEGY.weights
        y_pos = np.arange(len(weights.columns))

        # Create the figure:
        f1, ax = plt.subplots(figsize=(10, 5))

        # Create the plots:
        ax.bar(list(weights.columns), weights.values[0], label='Assets')
        plt.xticks(y_pos, rotation=45, size=10)
        plt.xticks(y_pos, rotation=45, size=10)
        ax.grid(True)

        plt.grid(linestyle='dotted')
        plt.xlabel('Assets',
                   horizontalalignment='center',
                   verticalalignment='center',
                   fontsize=14,
                   labelpad=20)
        plt.ylabel('Asset Weights',
                   horizontalalignment='center',
                   verticalalignment='center',
                   fontsize=14,
                   labelpad=20)
        ax.legend(loc='best')
        plt.title(
            f'Optimal portfolio for {self.STRATEGY.__class__.__name__} optimization'
        )
        plt.subplots_adjust(left=0.09,
                            bottom=0.20,
                            right=0.94,
                            top=0.90,
                            wspace=0.2,
                            hspace=0)
        f1.canvas.set_window_title('OPTIMIZATION METHODS')

        # In PNG:
        plt.savefig(self.saveDirectory + 'OptimalPortfolio.png')

        # Show:
        plt.show()

    def _plotClusters(self):

        # Create the figure:
        f1, ax = plt.subplots(figsize=(10, 5))

        # Create the plots:
        self.STRATEGY.plot_clusters(self.DF_CLOSE.columns)
        ax.grid(True)

        plt.grid(linestyle='dotted')
        plt.title(
            f'Dendrogram for {self.STRATEGY.__class__.__name__} optimization')
        plt.xticks(rotation=45)
        plt.subplots_adjust(left=0.09,
                            bottom=0.20,
                            right=0.94,
                            top=0.90,
                            wspace=0.2,
                            hspace=0)
        f1.canvas.set_window_title('OPTIMIZATION METHODS')

        # In PNG:
        plt.savefig(self.saveDirectory + 'Dendogram.png')

        # Show:
        plt.show()

    def _predictOutcome(self):

        pass