def test_classification_kmeans(self):
     iris = datasets.load_iris()
     X, y = iris.data, iris.target
     clr = ClassifierAfterKMeans()
     clr.fit(X, y)
     acc = clr.score(X, y)
     self.assertGreater(acc, 0)
     prob = clr.predict_proba(X)
     self.assertEqual(prob.shape[1], 3)
     dec = clr.decision_function(X)
     self.assertEqual(prob.shape, dec.shape)
Beispiel #2
0
 def test_classification_kmeans(self):
     iris = datasets.load_iris()
     X, y = iris.data, iris.target
     clr = ClassifierAfterKMeans()
     try:
         clr.fit(X, y)
     except AttributeError as e:
         if compare_module_version(sklver, "0.24") < 0:
             return
         raise e
     acc = clr.score(X, y)
     self.assertGreater(acc, 0)
     prob = clr.predict_proba(X)
     self.assertEqual(prob.shape[1], 3)
     dec = clr.decision_function(X)
     self.assertEqual(prob.shape, dec.shape)