def evaluator(x_train, y_train, x_val, y_val, experiment_path="", **kwargs):
    # Define model
    model = Sequential(loss="cross_entropy")
    model.add(
        Dense(nodes=10, input_dim=x_train.shape[0], weight_initialization="fixed"))
    model.add(Activation("softmax"))

    # Fit model
    model.fit(X=x_train, Y=y_train, X_val=x_val, Y_val=y_val, **kwargs)
    model.plot_training_progress(show=False, save=True, name="figures/" + dict_to_string(kwargs))
    model.save(experiment_path + "/" + dict_to_string(kwargs))

    # Minimizing value: validation accuracy
    val_acc = model.get_classification_metrics(x_val, y_val)[0] # Get accuracy
    result = {"value": val_acc, "model": model}  # Save score and model
    return result
Beispiel #2
0
def evaluator(l2_reg):
    # Define model
    model = Sequential(loss=CrossEntropy(), metric=Accuracy())
    model.add(Dense(nodes=800, input_dim=x_train.shape[0]))
    model.add(Relu())
    model.add(Dense(nodes=10, input_dim=800))
    model.add(Softmax())

    ns = 800

    # Define callbacks
    mt = MetricTracker()  # Stores training evolution info
    lrs = LearningRateScheduler(evolution="cyclic",
                                lr_min=1e-3,
                                lr_max=1e-1,
                                ns=ns)  # Modifies lr while training
    callbacks = [mt, lrs]

    # Fit model
    iterations = 4 * ns
    model.fit(X=x_train,
              Y=y_train,
              X_val=x_val,
              Y_val=y_val,
              batch_size=100,
              iterations=iterations,
              l2_reg=l2_reg,
              shuffle_minibatch=True,
              callbacks=callbacks)
    model.save("models/yes_dropout_test")

    # Test model
    val_acc = model.get_metric_loss(x_val, y_val)[0]
    test_acc = model.get_metric_loss(x_test, y_test)[0]
    subtitle = "L2 param: " + str(l2_reg) + ", Test acc: " + str(test_acc)
    mt.plot_training_progress(show=True,
                              save=True,
                              name="figures/l2reg_optimization/" + str(l2_reg),
                              subtitle=subtitle)
    print("Val accuracy:", val_acc)
    print("Test accuracy:", test_acc)
    return val_acc
Beispiel #3
0
    k1 = 6  # First kernel y size
    n2 = 20  # Filters of second Conv2D
    k2 = 4  # Second kernel y size
    # Define model
    model = Sequential(loss=CrossEntropy(class_count=None), metric=Accuracy())
    model.add(
        Conv2D(num_filters=n1,
               kernel_shape=(d, k1),
               input_shape=x_train.shape[:-1]))
    model.add(Relu())
    model.add(Conv2D(num_filters=n2, kernel_shape=(1, k2)))
    model.add(Relu())
    model.add(Flatten())
    model.add(Dense(nodes=y_train.shape[0]))
    model.add(Softmax())
    # Fit model
    model.fit(X=x_train,
              Y=y_train,
              X_val=x_val,
              Y_val=y_val,
              batch_size=100,
              epochs=500,
              lr=1e-3,
              momentum=0.8,
              l2_reg=0.001,
              compensate=True,
              callbacks=callbacks)
    model.save("models/names_best")

    mt.plot_training_progress(save=True, name="figures/names_best")
    # y_pred_prob = model.predict(x_train)
def evaluator(x_train, y_train, x_val, y_val, experiment_name="", **kwargs):
    print(kwargs)
    # Saving directories
    figure_file = "figures/" + experiment_name + "/" + dict_to_string(kwargs)
    model_file = "models/" + experiment_name + "/" + dict_to_string(kwargs)

    mt = MetricTracker()  # Stores training evolution info (losses and metrics)

    # Define model
    d = x_train.shape[0]
    n1 = kwargs["n1"]  # Filters of first Conv2D
    k1 = kwargs["k1"]  # First kernel y size
    n2 = kwargs["n2"]  # Filters of second Conv2D
    k2 = kwargs["k2"]  # Second kernel y size
    batch_size = kwargs["batch_size"]

    try:
        # Define model
        model = Sequential(loss=CrossEntropy(class_count=None),
                           metric=Accuracy())
        model.add(
            Conv2D(num_filters=n1,
                   kernel_shape=(d, k1),
                   input_shape=x_train.shape[:-1]))
        model.add(Relu())
        model.add(Conv2D(num_filters=n2, kernel_shape=(1, k2)))
        model.add(Relu())
        model.add(Flatten())
        model.add(Dense(nodes=y_train.shape[0]))
        model.add(Softmax())
        # Fit model
        model.fit(X=x_train,
                  Y=y_train,
                  X_val=x_val,
                  Y_val=y_val,
                  batch_size=batch_size,
                  epochs=1000,
                  lr=1e-2,
                  momentum=0.8,
                  l2_reg=0.001,
                  compensate=True,
                  callbacks=[mt])
    except Exception as e:
        print(e)
        return -1  # If configuration impossible
    model.save(model_file)

    # Write results
    n1 = str(n1)
    n2 = str(n2)
    k1 = str(k1)
    k2 = str(k2)
    batch_size = str(batch_size)
    subtitle = "n1:" + n1 + ", n2:" + n2 + ", k1:" + k1 + ", k2:" + k1 +\
               ", batch_size:" + batch_size
    mt.plot_training_progress(show=False,
                              save=True,
                              name=figure_file,
                              subtitle=subtitle)

    # Maximizing value: validation accuracy
    return model.val_metric
Beispiel #5
0
    lrs = LearningRateScheduler(evolution="cyclic",
                                lr_min=1e-3,
                                lr_max=1e-1,
                                ns=ns)  # Modifies lr while training
    # callbacks = [mt, bms, lrs]
    callbacks = [mt, lrs]

    # Fit model
    iterations = 4 * ns
    model.fit(X=x_train,
              Y=y_train,
              X_val=x_val,
              Y_val=y_val,
              batch_size=100,
              iterations=iterations,
              momentum=0.89,
              l2_reg=1e-5,
              shuffle_minibatch=True,
              callbacks=callbacks)
    model.save("models/yes_dropout_test")

    # Test model
    # best_model = bms.get_best_model()
    # test_acc, test_loss = best_model.get_metric_loss(x_test, y_test)
    # subtitle = "No Dropout, Test acc: " + test_acc
    subtitle = ""
    mt.plot_training_progress(show=True,
                              save=True,
                              name="figures/test_dropout_test",
                              subtitle=subtitle)
    # print("Test accuracy:", test_acc)
Beispiel #6
0
    model.add(Flatten())
    model.add(Dense(nodes=200))
    model.add(Relu())
    model.add(Dense(nodes=10))
    model.add(Softmax())


    # for filt in model.layers[0].filters:
    #     print(filt)
    # y_pred_prob = model.predict(x_train)
    # print(y_pred_prob)

    # Fit model
    # model.load("models/cifar_test_2")
    # mt.load("models/tracker")
    model.fit(X=x_train, Y=y_train, X_val=x_val, Y_val=y_val,
              batch_size=100, epochs=20, momentum=0.9, l2_reg=0.003, callbacks=callbacks)
    model.save("models/cifar_test_3")
    # model.layers[0].show_filters()

    # for filt in model.layers[0].filters:
    #     print(filt)

    # print(model.layers[0].biases)

    mt.plot_training_progress()
    # y_pred_prob = model.predict(x_train)
    # # # model.pred
    # print(y_train)
    # print(np.round(y_pred_prob, decimals=2))
    # Preprocessing
    mean_x = np.mean(x_train)
    std_x = np.std(x_train)
    x_train = (x_train - mean_x) / std_x
    x_val = (x_val - mean_x) / std_x
    x_test = (x_test - mean_x) / std_x

    # Define model
    model = Sequential(loss=CrossEntropy())
    model.add(Dense(nodes=10, input_dim=x_train.shape[0]))
    model.add(Softmax())

    # Fit model
    #     model.load("models/mlp_test")
    model.fit(X=x_train,
              Y=y_train,
              X_val=x_val,
              Y_val=y_val,
              batch_size=100,
              epochs=40,
              lr=0.001,
              momentum=0.0,
              l2_reg=0.0,
              shuffle_minibatch=False)
    model.plot_training_progress(save=True, name="figures/mlp_test")
    model.save("models/mlp_test")

    # Test model
    test_acc, test_loss = model.get_classification_metrics(x_test, y_test)
    print("Test accuracy:", test_acc)
Beispiel #8
0
    model.add(Softmax())

    # for filt in model.layers[0].filters:
    #     print(filt)
    # y_pred_prob = model.predict(x_train)
    # print(y_pred_prob)

    # Fit model
    model.fit(X=x_train,
              Y=y_train,
              X_val=x_val,
              Y_val=y_val,
              batch_size=100,
              epochs=200,
              lr=1e-2,
              momentum=0.5,
              callbacks=callbacks)
    model.save("models/mnist_test_conv_2")
    # model.layers[0].show_filters()

    # for filt in model.layers[0].filters:
    #     print(filt)

    # print(model.layers[0].biases)

    mt.plot_training_progress()
    y_pred_prob = model.predict(x_train)
    # # # model.pred
    # print(y_train)
    # print(np.round(y_pred_prob, decimals=2))
Beispiel #9
0
    x_train = (x_train - mean_x) / std_x
    x_val = (x_val - mean_x) / std_x
    x_test = (x_test - mean_x) / std_x

    # Define model
    model = Sequential(loss=CrossEntropy())
    model.add(Dense(nodes=50, input_dim=x_train.shape[0]))
    model.add(Relu())
    model.add(Dense(nodes=10, input_dim=50))
    model.add(Softmax())

    # Fit model
    x_train = x_train[:, 0:100]
    y_train = y_train[:, 0:100]
    model.fit(X=x_train,
              Y=y_train,
              X_val=x_val,
              Y_val=y_val,
              batch_size=100,
              epochs=200,
              lr=0.001,
              momentum=0.0,
              l2_reg=0.0,
              shuffle_minibatch=False,
              save_path="models/mlp_overfit_test")
    model.plot_training_progress(save=True, name="figures/mlp_overfit_test")
    model.save("models/mlp_overfit_test")

    # Test model
    test_acc, test_loss = model.get_classification_metrics(x_test, y_test)
    print("Test accuracy:", test_acc)
Beispiel #10
0
    mt = MetricTracker()  # Stores training evolution info
    lrs = LearningRateScheduler(evolution="cyclic",
                                lr_min=1e-5,
                                lr_max=1e-1,
                                ns=ns)  # Modifies lr while training
    callbacks = [mt, lrs]

    # Fit model
    iterations = 6 * ns
    model.fit(X=x_train,
              Y=y_train,
              X_val=x_val,
              Y_val=y_val,
              batch_size=100,
              iterations=iterations,
              l2_reg=10**-1.85,
              shuffle_minibatch=True,
              callbacks=callbacks)
    model.save("models/l2reg_optimization_good")

    # Test model
    val_acc = model.get_metric_loss(x_val, y_val)[0]
    test_acc = model.get_metric_loss(x_test, y_test)[0]
    subtitle = "Test acc: " + str(test_acc)
    mt.plot_training_progress(show=True,
                              save=True,
                              name="figures/l2reg_optimization/good",
                              subtitle=subtitle)
    print("Val accuracy:", val_acc)
    print("Test accuracy:", test_acc)