def evaluate(self, dataset, encoder, dir): interpreter = self.interpreter() model = self.prepare_model(encoder) eval( os.path.join(dir, "RL"), dir, dataset, model, self.prepare_synthesizer(model, encoder, interpreter, rollout=False), {}, top_n=[], ) return torch.load(os.path.join(dir, "result.pt"))
def evaluate(self, dataset, encoder, dir): with tempfile.TemporaryDirectory() as tmpdir: interpreter = self.interpreter() model = self.prepare_model(encoder) eval( dir, tmpdir, dir, dataset, model, self.prepare_synthesizer(model, encoder, interpreter, rollout=False), {}, top_n=[], ) return torch.load(os.path.join(dir, "result.pt"))
def evaluate(self, qencoder, aencoder, dir): model = self.prepare_model(qencoder, aencoder) eval( dir, dir, test_dataset, model, self.prepare_synthesizer(model, qencoder, aencoder), { "accuracy": use_environment( metric=Accuracy(), in_keys=["actual", ["ground_truth", "expected"]], value_key="actual") }, top_n=[5], ) return torch.load(os.path.join(dir, "result.pt"))