Beispiel #1
0
def get_fitness_functions():
    df = pd.read_csv("./houston2008_order.csv")
    coord_list = list(df[['lat', 'long']].apply(tuple, axis=1))
    coord_list = coord_list[0:30]
    fitness_tsp = mlrose.TravellingSales(coords=coord_list)
    problem_tsp = mlrose.TSPOpt(length=len(coord_list),
                                fitness_fn=fitness_tsp,
                                maximize=False)

    fitness_fourpeak = mlrose.FourPeaks(t_pct=.3)
    problem_fourpeak = mlrose.DiscreteOpt(length=20,
                                          fitness_fn=fitness_fourpeak)

    fitness_flipflop = mlrose.FlipFlop()
    problem_flipflop = mlrose.DiscreteOpt(length=30,
                                          fitness_fn=fitness_flipflop)

    fitness_one_max = mlrose.OneMax()
    problem_one_max = mlrose.DiscreteOpt(
        length=35,
        fitness_fn=fitness_one_max,
    )

    weights = [10, 5, 2, 8, 15]
    values = [1, 2, 3, 4, 5]
    max_weight_pct = 0.6
    fitness_knapsack = mlrose.Knapsack(weights, values, max_weight_pct)
    problem_knapsack = mlrose.DiscreteOpt(length=5,
                                          fitness_fn=fitness_knapsack)

    return {
        "tsp": problem_tsp,
        "four_peaks": problem_fourpeak,
        "one_max": problem_one_max,
    }
Beispiel #2
0
def get_flip_flop(size):
    flip_flop = mlrose.FlipFlop()
    state = np.array([0,1,0,1,1,1,1])
    flip_flop.evaluate(state)
    problem = mlrose.DiscreteOpt(
        length=size,
        fitness_fn=flip_flop,
        maximize=True,
        max_val=2 # makes it bit string
    )
    return problem
Beispiel #3
0
def main():
    verbose = True
    num_runs = 20
    max_iters = 1000

    # define flip flop fitness function to maximize
    fitness_fn = mlrose.FlipFlop()

    # define optimization problem
    length = 500
    ff_problem = mlrose.FlipFlopOpt(
        length=length,
        fitness_fn=fitness_fn,
        maximize=True,
    )

    ff_problem.set_mimic_fast_mode(True)

    # set initial state
    initial_state = np.random.randint(0, 2, size=length)

    # randomized hill climbing
    rhc_fitness_dfs = flip_flop_rhc(ff_problem, initial_state, max_iters,
                                    num_runs, verbose)
    print('---')

    # simulated annealing
    sa_fitness_dfs = flip_flop_sa(ff_problem, initial_state, max_iters,
                                  num_runs, verbose)
    print('---')

    # genetic algorithm
    ga_fitness_dfs = flip_flop_ga(ff_problem, max_iters, num_runs, verbose)
    print('---')

    # MIMIC algorithm
    mimic_fitness_dfs = flip_flop_mimic(ff_problem, max_iters, num_runs,
                                        verbose)
    print('---')

    # compare algorithm performance
    plotting.compare_algos(
        problem_name='flip_flop',
        rhc_dfs=rhc_fitness_dfs,
        sa_dfs=sa_fitness_dfs,
        ga_dfs=ga_fitness_dfs,
        mimic_dfs=mimic_fitness_dfs,
    )
def main():
    ## SET SOME PARAMS TO USE GLOBALLY
    max_iters_list = [50, 100, 1000]  #,32,64,128,256,512,1024]
    max_iters_list_full = [2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
    rand_list = [1, 11, 22]  #,44,55,66,77,88,99]
    rand_list_full = [0, 11, 22, 33, 44, 55, 66, 77, 88, 99]
    input_location = 'data/'
    output_location = 'outputs/'
    chart_output_location = 'charts/'
    prefix = '5th_'

    ## DEFINE PROBLEMS TO SOLVE
    # Traveling Salesman Problem (TSP)
    space_length = 1000
    cities_cnt = 200
    coords_list, x, y = create_TSP(space_length,
                                   cities_cnt,
                                   return_lists_too=True)
    plt.plot(x, y, 'o')
    plt.savefig(chart_output_location + 'TPS_visual' + '.png')
    fitness_coords = mlrose.TravellingSales(coords=coords_list)
    problem_TSP = mlrose.TSPOpt(length=len(coords_list),
                                fitness_fn=fitness_coords,
                                maximize=False)

    # 4 Peaks
    t_pct = 0.1
    length = 200
    fitness_4_peaks = mlrose.FourPeaks(t_pct=t_pct)
    problem_4P = mlrose.DiscreteOpt(length=length,
                                    fitness_fn=fitness_4_peaks,
                                    maximize=True,
                                    max_val=2)
    problem_4P_small = mlrose.DiscreteOpt(length=50,
                                          fitness_fn=fitness_4_peaks,
                                          maximize=True,
                                          max_val=2)
    problem_4P_big = mlrose.DiscreteOpt(length=1000,
                                        fitness_fn=fitness_4_peaks,
                                        maximize=True,
                                        max_val=2)

    # Continuous Peaks
    t_pct = 0.1
    length = 200
    fitness_cont_peaks = mlrose.ContinuousPeaks(t_pct=t_pct)
    problem_cont_peaks = mlrose.DiscreteOpt(length=length,
                                            fitness_fn=fitness_cont_peaks,
                                            maximize=True,
                                            max_val=2)

    # Flip Flop
    length = 200
    fitness_FF = mlrose.FlipFlop()
    problem_FF = mlrose.DiscreteOpt(length=length,
                                    fitness_fn=fitness_FF,
                                    maximize=True,
                                    max_val=2)
    problem_FF_small = mlrose.DiscreteOpt(length=50,
                                          fitness_fn=fitness_FF,
                                          maximize=True,
                                          max_val=2)
    problem_FF_big = mlrose.DiscreteOpt(length=1000,
                                        fitness_fn=fitness_FF,
                                        maximize=True,
                                        max_val=2)

    # Knapsack
    length = 200
    weights, values = create_Knapsack(length)
    weights_big, values_big = create_Knapsack(1000)
    weights_small, values_small = create_Knapsack(50)
    fitness_KS = mlrose.Knapsack(weights, values, max_weight_pct=0.65)
    fitness_KS_big = mlrose.Knapsack(weights_big,
                                     values_big,
                                     max_weight_pct=0.65)
    fitness_KS_small = mlrose.Knapsack(weights_small,
                                       values_small,
                                       max_weight_pct=0.65)
    problem_KS = mlrose.DiscreteOpt(length=length,
                                    fitness_fn=fitness_KS,
                                    maximize=True,
                                    max_val=2)
    problem_KS_big = mlrose.DiscreteOpt(length=1000,
                                        fitness_fn=fitness_KS_big,
                                        maximize=True,
                                        max_val=2)
    problem_KS_small = mlrose.DiscreteOpt(length=50,
                                          fitness_fn=fitness_KS_small,
                                          maximize=True,
                                          max_val=2)

    dict_of_param_dict = {}
    dict_of_param_dict['GA'] = {
        'pop_size': [100, 200],  #,1000],
        'mutation_prob': [0.5, 0.1, 0.2],
        'max_attempts': [5, 10, 30],
        'max_iters': max_iters_list,
        'random_state': rand_list
    }
    dict_of_param_dict['RHC'] = {
        'max_attempts': [30, 50, 100],  #[5,10,20,50]
        'restarts': [5, 10, 20],  #[0,1,2,5]
        'max_iters': max_iters_list,
        'random_state': rand_list
    }
    dict_of_param_dict['SA'] = {
        'max_attempts': [10, 50, 100],
        'init_temp': [1.0, 10.0, 0.5, 20, 100, 1000],
        'decay': [0.99, 0.8, 0.5],
        'max_iters': max_iters_list,
        'random_state': rand_list
    }
    dict_of_param_dict['MIMIC'] = {
        'pop_size': [100, 150],
        'keep_pct': [0.5, 0.2],
        'max_attempts': [10],
        'max_iters': [100],
        'random_state': rand_list
    }

    MIMIC_FF = {
        'pop_size': 100,
        'keep_pct': 0.5,
        'max_attempts': 30,
        'max_iters': [2, 4, 8, 16, 32, 64,
                      128],  ## put full list here before uploading
        'random_state': [0, 11, 22, 33, 44]
    }
    MIMIC_4P = {
        'pop_size': 150,
        'keep_pct': 0.2,
        'max_attempts': 30,
        'max_iters': [2, 4, 8, 16, 32, 64,
                      128],  ## put full list here before uploading
        'random_state': [0, 11, 22, 33, 44]
    }
    MIMIC_KS = {
        'pop_size': 150,
        'keep_pct': 0.5,
        'max_attempts': 30,
        'max_iters': [2, 4, 8, 16, 32, 64,
                      128],  ## put full list here before uploading
        'random_state': [0, 11, 22, 33, 44]
    }
    MIMIC_CP = {
        'pop_size': 200,
        'keep_pct': 0.2,
        'max_attempts': 30,
        'max_iters': [2, 4, 8, 16, 32, 64,
                      128],  ## put full list here before uploading
        'random_state': [0, 11, 22, 33, 44]
    }
    GA_FF = {
        'pop_size': 200,  #,1000],
        'mutation_prob': 0.5,
        'max_attempts': 30,
        'max_iters': max_iters_list_full,
        'random_state': rand_list_full
    }

    MIMIC_FF2 = {
        'pop_size': [100],
        'keep_pct': [0.5],
        'max_attempts': [30, 50],
        'max_iters': [64],
        'random_state': [55]  #,66,77,88,99]
    }

    print("starting MIMIC FF")
    # GETTING MIMIC FF RESULTS
    print("starting MIMIC FF...")
    ''' ## Started running at 3am
    results_df, curve_output_list = fitness_by_iter('MIMIC', problem_FF, MIMIC_FF['max_iters'], MIMIC_FF['random_state']\
    , pop_size=MIMIC_FF['pop_size'], max_attempts=MIMIC_FF['max_attempts'], curve=True, keep_pct=MIMIC_FF['keep_pct'])
    results_df.to_csv(output_location + 'final_MIMIC_FF_attempt_3am.csv')


    results_df, curve_output_list = fitness_by_iter('MIMIC', problem_4P, MIMIC_4P['max_iters'], MIMIC_4P['random_state']\
    , pop_size=MIMIC_4P['pop_size'], max_attempts=MIMIC_4P['max_attempts'], curve=True, keep_pct=MIMIC_4P['keep_pct'])
    results_df.to_csv(output_location + 'final_MIMIC_4P_attempt_3am.csv')


    results_df, curve_output_list = fitness_by_iter('MIMIC', problem_KS, MIMIC_KS['max_iters'], MIMIC_KS['random_state']\
    , pop_size=MIMIC_KS['pop_size'], max_attempts=MIMIC_KS['max_attempts'], curve=True, keep_pct=MIMIC_KS['keep_pct'])
    results_df.to_csv(output_location + 'final_MIMIC_KS_attempt_3am.csv')


    results_df, curve_output_list = fitness_by_iter('MIMIC', problem_cont_peaks, MIMIC_CP['max_iters'], MIMIC_CP['random_state']\
    , pop_size=MIMIC_CP['pop_size'], max_attempts=MIMIC_CP['max_attempts'], curve=True, keep_pct=MIMIC_CP['keep_pct'])
    results_df.to_csv(output_location + 'final_MIMIC_CP_attempt_3am.csv')

    '''

    ## USED FOR GRID SEARCHING PARAMETERS FOR RO ON 3 PROBLEMS
    GA_params_dict = get_params_for_grid_search('GA', max_iters_list=[200])
    print("Here are my GA params for grid search: ", GA_params_dict)
    SA_params_dict = get_params_for_grid_search('SA',
                                                max_iters_list=max_iters_list)
    print("Here are my SA params for grid search: ", SA_params_dict)
    RHC_params_dict = get_params_for_grid_search('RHC',
                                                 max_iters_list=max_iters_list)
    print("Here are my RHC params for grid search: ", RHC_params_dict)
    MIMIC_params_dict = get_params_for_grid_search(
        'MIMIC', max_iters_list=max_iters_list)
    print("Here are my MIMIC params for grid search: ", MIMIC_params_dict)
    #grid_search_MIMIC = MIMIC_best_params(problem_TPS, MIMIC_params_dict, inverse_fitness=False)
    #grid_search_MIMIC.to_csv(output_location + 'grid_search_MIMIC.csv')
    '''
    grid_search_GA = GA_best_params(problem_FF, GA_params_dict, inverse_fitness=False)
    grid_search_GA.to_csv(output_location + prefix + 'grid_search_GA_FF_really.csv')
    print("finished GA")
    grid_search_MIMIC = MIMIC_best_params(problem_FF, MIMIC_params_dict, inverse_fitness=False)
    grid_search_MIMIC.to_csv(output_location + prefix + 'grid_search_MIMIC_FF_really.csv')
    '''
    print("finished MIMIC FF")

    print("Doing GA rn")
    #results_df, curve_output_list = fitness_by_iter('GA', problem_FF, GA_FF['max_iters'], GA_FF['random_state']\
    #, pop_size=GA_FF['pop_size'], max_attempts=GA_FF['max_attempts'], mutation_prob=GA_FF['mutation_prob'],curve=True)
    #results_df.to_csv(output_location + 'final_MIMIC_FF_attempt_1am.csv')
    print("finished GA")
    ''' GRID SEARCHING

    print("Starting grid search for RHC")
    grid_search_RHC = RHC_best_params(problem_TSP, RHC_params_dict, inverse_fitness=False)
    grid_search_RHC.to_csv(output_location + prefix +'grid_search_RHC_TSP.csv')
    grid_search_RHC = RHC_best_params(problem_FF, RHC_params_dict, inverse_fitness=False)
    grid_search_RHC.to_csv(output_location + prefix + 'grid_search_RHC_FF.csv')
    grid_search_RHC = RHC_best_params(problem_cont_peaks, RHC_params_dict, inverse_fitness=False)
    grid_search_RHC.to_csv(output_location + prefix + 'grid_search_RHC_cont_peaks.csv')
    grid_search_RHC = RHC_best_params(problem_4P, RHC_params_dict, inverse_fitness=False)
    grid_search_RHC.to_csv(output_location + prefix + 'grid_search_RHC_4P.csv')

    print("Starting grid search for SA")
    grid_search_SA = SA_best_params(problem_TSP, SA_params_dict, inverse_fitness=False)
    grid_search_SA.to_csv(output_location + prefix + 'grid_search_SA_TSP.csv')
    grid_search_SA = SA_best_params(problem_FF, SA_params_dict, inverse_fitness=False)
    grid_search_SA.to_csv(output_location + prefix + 'grid_search_SA_FF.csv')
    grid_search_SA = SA_best_params(problem_cont_peaks, SA_params_dict, inverse_fitness=False)
    grid_search_SA.to_csv(output_location + prefix + 'grid_search_SA_cont_peaks.csv')
    grid_search_SA = SA_best_params(problem_4P, SA_params_dict, inverse_fitness=False)
    grid_search_SA.to_csv(output_location + prefix + 'grid_search_SA_4P.csv')

    print("Starting grid search for GA")
    grid_search_GA = GA_best_params(problem_TSP, GA_params_dict, inverse_fitness=False)
    grid_search_GA.to_csv(output_location + prefix + 'grid_search_GA_TSP.csv')
    grid_search_GA = GA_best_params(problem_FF, GA_params_dict, inverse_fitness=False)
    grid_search_GA.to_csv(output_location + prefix + 'grid_search_GA_FF.csv')
    grid_search_GA = GA_best_params(problem_cont_peaks, GA_params_dict, inverse_fitness=False)
    grid_search_GA.to_csv(output_location + prefix + 'grid_search_GA_cont_peaks.csv')
    grid_search_GA = GA_best_params(problem_4P, GA_params_dict, inverse_fitness=False)
    grid_search_GA.to_csv(output_location + prefix + 'grid_search_GA_4P.csv')
    '''
    '''
    print("Starting grid search for MIMIC")
    grid_search_MIMIC = MIMIC_best_params(problem_FF, MIMIC_params_dict, inverse_fitness=False)
    grid_search_MIMIC.to_csv(output_location + prefix + 'grid_search_MIMIC_FF.csv')
    #grid_search_MIMIC = MIMIC_best_params(problem_cont_peaks, MIMIC_params_dict, inverse_fitness=False)
    #grid_search_MIMIC.to_csv(output_location + prefix + 'grid_search_MIMIC_cont_peaks.csv')
    grid_search_MIMIC = MIMIC_best_params(problem_4P, MIMIC_params_dict, inverse_fitness=False)
    grid_search_MIMIC.to_csv(output_location + prefix + 'grid_search_MIMIC_4P.csv')
    #grid_search_MIMIC = MIMIC_best_params(problem_TSP, MIMIC_params_dict, inverse_fitness=False)
    #grid_search_MIMIC.to_csv(output_location + 'grid_search_MIMIC_TSP.csv')
    print("Finished MIMIC grid searches")

    print("Starting grid search for Knapsack")
    #grid_search_MIMIC = MIMIC_best_params(problem_KS, MIMIC_params_dict, inverse_fitness=False)
    #grid_search_MIMIC.to_csv(output_location + prefix + 'grid_search_MIMIC_KS.csv')
    #grid_search_GA = GA_best_params(problem_KS, GA_params_dict, inverse_fitness=False)
    #grid_search_GA.to_csv(output_location + prefix + 'grid_search_GA_KS.csv')
    grid_search_SA = SA_best_params(problem_KS, SA_params_dict, inverse_fitness=False)
    grid_search_SA.to_csv(output_location + prefix + 'grid_search_SA_KS.csv')
    grid_search_RHC = RHC_best_params(problem_KS, RHC_params_dict, inverse_fitness=False)
    grid_search_RHC.to_csv(output_location + prefix + 'grid_search_RHC_KS.csv')
    '''

    ## Fitting MIMIC separately and with fewer iterations for all except the FF as run time is so long for MIMIC
    max = 128
    ''' MIMIC CURVE FOR CHARTS ##### Started (again) at 8am ######

    print("Fitting for MIMIC using the 'curve=True' functionality")
    print("First for KS")
    start_time_fit = time.perf_counter()
    a,b,curve_output = mlrose.mimic(problem_KS, pop_size=100, keep_pct=0.5, max_attempts=10, max_iters=128, curve=True\
    , random_state=0)
    end_time_fit = time.perf_counter()
    time_used = end_time_fit - start_time_fit
    df1, df2 = curve_to_df(curve_output, max)
    df2['time_to_128'] = time_used
    df1.to_csv(output_location+'MIMIC_KS_full_curve.csv')
    df2.to_csv(output_location+'MIMIC_KS_short_curve.csv')
    print("Finished KS")

    print("Next for 4 Peaks")
    start_time_fit = time.perf_counter()
    a,b,curve_output = mlrose.mimic(problem_4P, pop_size=150, keep_pct=0.2, max_attempts=10, max_iters=128, curve=True\
    , random_state=0)
    end_time_fit = time.perf_counter()
    time_used = end_time_fit - start_time_fit
    df1, df2 = curve_to_df(curve_output, max)
    df2['time_to_128'] = time_used
    df1.to_csv(output_location+'MIMIC_4P_full_curve.csv')
    df2.to_csv(output_location+'MIMIC_4P_short_curve.csv')
    print("Finished 4 Peaks")

    print("Next for 4 Peaks with 100 and 0.5")
    start_time_fit = time.perf_counter()
    a,b,curve_output = mlrose.mimic(problem_4P, pop_size=100, keep_pct=0.5, max_attempts=10, max_iters=128, curve=True\
    , random_state=0)
    end_time_fit = time.perf_counter()
    time_used = end_time_fit - start_time_fit
    df1, df2 = curve_to_df(curve_output, max)
    df2['time_to_128'] = time_used
    df1.to_csv(output_location+'MIMIC_4P_pop100_keep50_full_curve.csv')
    df2.to_csv(output_location+'MIMIC_4P_pop100_keep50_short_curve.csv')
    print("Finished 4 Peaks")

    print("Next for 4 Peaks with 100 and 0.2")
    start_time_fit = time.perf_counter()
    a,b,curve_output = mlrose.mimic(problem_4P, pop_size=100, keep_pct=0.2, max_attempts=10, max_iters=128, curve=True\
    , random_state=0)
    end_time_fit = time.perf_counter()
    time_used = end_time_fit - start_time_fit
    df1, df2 = curve_to_df(curve_output, max)
    df2['time_to_128'] = time_used
    df1.to_csv(output_location+'MIMIC_4P_pop100_keep20_full_curve.csv')
    df2.to_csv(output_location+'MIMIC_4P_pop100_keep20_short_curve.csv')
    print("Finished 4 Peaks")

    print("Next for 4 Peaks with 150 and 0.5")
    start_time_fit = time.perf_counter()
    a,b,curve_output = mlrose.mimic(problem_4P, pop_size=100, keep_pct=0.2, max_attempts=10, max_iters=128, curve=True\
    , random_state=0)
    end_time_fit = time.perf_counter()
    time_used = end_time_fit - start_time_fit
    df1, df2 = curve_to_df(curve_output, max)
    df2['time_to_128'] = time_used
    df1.to_csv(output_location+'MIMIC_4P_pop150_keep50_full_curve.csv')
    df2.to_csv(output_location+'MIMIC_4P_pop150_keep50_short_curve.csv')
    print("Finished 4 Peaks")

    print("Next for 4 Peaks Big")
    start_time_fit = time.perf_counter()
    a,b,curve_output = mlrose.mimic(problem_4P_big, pop_size=150, keep_pct=0.2, max_attempts=10, max_iters=128, curve=True\
    , random_state=0)
    end_time_fit = time.perf_counter()
    time_used = end_time_fit - start_time_fit
    df1, df2 = curve_to_df(curve_output, max)
    df2['time_to_128'] = time_used
    df1.to_csv(output_location+'MIMIC_4P_big_full_curve.csv')
    df2.to_csv(output_location+'MIMIC_4P_big_short_curve.csv')
    print("Finished 4 Peaks Big")

    print("Next for KS Small")
    start_time_fit = time.perf_counter()
    a,b,curve_output = mlrose.mimic(problem_KS_small, pop_size=100, keep_pct=0.5, max_attempts=10, max_iters=128, curve=True\
    , random_state=0)
    end_time_fit = time.perf_counter()
    time_used = end_time_fit - start_time_fit
    df1, df2 = curve_to_df(curve_output, max)
    df2['time_to_128'] = time_used
    df1.to_csv(output_location+'MIMIC_KS_small_full_curve.csv')
    df2.to_csv(output_location+'MIMIC_KS_small_short_curve.csv')
    print("Finished KS small")

    print("Next FF small")
    start_time_fit = time.perf_counter()
    a,b,curve_output = mlrose.mimic(problem_FF_small, pop_size=100, keep_pct=0.5, max_attempts=10, max_iters=128, curve=True\
    , random_state=0)
    end_time_fit = time.perf_counter()
    time_used = end_time_fit - start_time_fit
    df1, df2 = curve_to_df(curve_output, max)
    df2['time_to_128'] = time_used
    df1.to_csv(output_location+'MIMIC_FF_small_full_curve.csv')
    df2.to_csv(output_location+'MIMIC_KS_small_short_curve.csv')
    print("Finished FF Small")

    print("Next for 4 Peaks Small")
    start_time_fit = time.perf_counter()
    a,b,curve_output = mlrose.mimic(problem_4P_small, pop_size=150, keep_pct=0.2, max_attempts=10, max_iters=128, curve=True\
    , random_state=0)
    end_time_fit = time.perf_counter()
    time_used = end_time_fit - start_time_fit
    df1, df2 = curve_to_df(curve_output, max)
    df2['time_to_128'] = time_used
    df1.to_csv(output_location+'MIMIC_4P_small_full_curve.csv')
    df2.to_csv(output_location+'MIMIC_4P_small_short_curve.csv')
    print("Finished 4 Peaks Small")
    '''

    ### Now GA

    GA_FF = {
        'pop_size': 100,  #,1000],
        'mutation_prob': 0.1,
        'max_attempts': 30,
        'max_iters': max_iters_list_full,
        'random_state': rand_list_full
    }
    GA_KS = {
        'pop_size': 200,  #,1000],
        'mutation_prob': 0.2,
        'max_attempts': 30,
        'max_iters': max_iters_list_full,
        'random_state': rand_list_full
    }
    GA_4P = {
        'pop_size': 200,  #,1000],
        'mutation_prob': 0.5,
        'max_attempts': 30,
        'max_iters': max_iters_list_full,
        'random_state': rand_list_full
    }
    ''' More fitness by iteration calculations
    #results_df, curve_output_list = fitness_by_iter('GA', problem_FF, GA_FF['max_iters'], GA_FF['random_state']\
    #, pop_size=GA_FF['pop_size'], max_attempts=GA_FF['max_attempts'], curve=True, mutation_prob=GA_FF['mutation_prob'])
    #results_df.to_csv(output_location + 'final_GA_FF_attempt_8am.csv')
    results_df, curve_output_list = fitness_by_iter('GA', problem_FF_small, GA_FF['max_iters'], GA_FF['random_state']\
    , pop_size=GA_FF['pop_size'], max_attempts=GA_FF['max_attempts'], curve=True, mutation_prob=GA_FF['mutation_prob'])
    results_df.to_csv(output_location + 'final_GA_FF_small_attempt_8am.csv')
    results_df, curve_output_list = fitness_by_iter('GA', problem_FF_big, GA_FF['max_iters'], GA_FF['random_state']\
    , pop_size=GA_FF['pop_size'], max_attempts=GA_FF['max_attempts'], curve=True, mutation_prob=GA_FF['mutation_prob'])
    results_df.to_csv(output_location + 'final_GA_FF_big_attempt_8am.csv')



    #results_df, curve_output_list = fitness_by_iter('GA', problem_4P, GA_4P['max_iters'], GA_4P['random_state']\
    #, pop_size=GA_4P['pop_size'], max_attempts=GA_4P['max_attempts'], curve=True, mutation_prob=GA_4P['mutation_prob'])
    #results_df.to_csv(output_location + 'final_GA_4P_attempt_8am.csv')
    results_df, curve_output_list = fitness_by_iter('GA', problem_4P_big, GA_4P['max_iters'], GA_4P['random_state']\
    , pop_size=GA_4P['pop_size'], max_attempts=GA_4P['max_attempts'], curve=True, mutation_prob=GA_4P['mutation_prob'])
    results_df.to_csv(output_location + 'final_GA_4P_big_attempt_8am.csv')
    results_df, curve_output_list = fitness_by_iter('GA', problem_4P_small, GA_4P['max_iters'], GA_4P['random_state']\
    , pop_size=GA_4P['pop_size'], max_attempts=GA_4P['max_attempts'], curve=True, mutation_prob=GA_4P['mutation_prob'])
    results_df.to_csv(output_location + 'final_GA_4P_small_attempt_8am.csv')



    #results_df, curve_output_list = fitness_by_iter('GA', problem_KS, GA_KS['max_iters'], GA_KS['random_state']\
    #, pop_size=GA_KS['pop_size'], max_attempts=GA_KS['max_attempts'], curve=True, mutation_prob=GA_KS['mutation_prob'])
    #results_df.to_csv(output_location + 'final_GA_KS_attempt_8am.csv')
    results_df, curve_output_list = fitness_by_iter('GA', problem_KS_big, GA_KS['max_iters'], GA_KS['random_state']\
    , pop_size=GA_KS['pop_size'], max_attempts=GA_KS['max_attempts'], curve=True, mutation_prob=GA_KS['mutation_prob'])
    results_df.to_csv(output_location + 'final_GA_KS_big_attempt_8am.csv')
    results_df, curve_output_list = fitness_by_iter('GA', problem_KS_small, GA_KS['max_iters'], GA_KS['random_state']\
    , pop_size=GA_KS['pop_size'], max_attempts=GA_KS['max_attempts'], curve=True, mutation_prob=GA_KS['mutation_prob'])
    results_df.to_csv(output_location + 'final_GA_KS_small_attempt_8am.csv')

    '''

    ########### SA
    print("now doing SA")
    SA_4P = {
        'max_attempts': 10,
        'schedule': mlrose.GeomDecay(init_temp=100, decay=0.8),
        'max_iters': max_iters_list_full,
        'random_state': rand_list_full
    }

    SA_FF = {
        'max_attempts': 10,
        'schedule': mlrose.GeomDecay(init_temp=100, decay=0.8),
        'max_iters': max_iters_list_full,
        'random_state': rand_list_full
    }

    results_df, curve_output_list = fitness_by_iter('SA', problem_4P, SA_4P['max_iters'], SA_4P['random_state']\
    , schedule=SA_4P['schedule'], max_attempts=SA_4P['max_attempts'], curve=True)
    results_df.to_csv(output_location + 'final_SA_4P_attempt_8am.csv')

    results_df, curve_output_list = fitness_by_iter('SA', problem_4P_big, SA_4P['max_iters'], SA_4P['random_state']\
    , schedule=SA_4P['schedule'], max_attempts=SA_4P['max_attempts'], curve=True)
    results_df.to_csv(output_location + 'final_SA_4P_big_attempt_8am.csv')
    results_df, curve_output_list = fitness_by_iter('SA', problem_4P, SA_4P['max_iters'], SA_4P['random_state']\
    , schedule=SA_4P['schedule'], max_attempts=SA_4P['max_attempts'], curve=True)
    results_df.to_csv(output_location + 'final_SA_4P_small_attempt_8am.csv')
    ''' more fitness by iteration calculations
    #results_df, curve_output_list = fitness_by_iter('SA', problem_FF, SA_FF['max_iters'], SA_FF['random_state']\
    #, schedule=SA_FF['schedule'], max_attempts=SA_FF['max_attempts'], curve=True)
    #results_df.to_csv(output_location + 'final_SA_FF_attempt_8am.csv')
    results_df, curve_output_list = fitness_by_iter('SA', problem_FF_big, SA_FF['max_iters'], SA_FF['random_state']\
    , schedule=SA_FF['schedule'], max_attempts=SA_FF['max_attempts'], curve=True)
    results_df.to_csv(output_location + 'final_SA_FF_big_attempt_8am.csv')
    results_df, curve_output_list = fitness_by_iter('SA', problem_FF_small, SA_FF['max_iters'], SA_FF['random_state']\
    , schedule=SA_FF['schedule'], max_attempts=SA_FF['max_attempts'], curve=True)
    results_df.to_csv(output_location + 'final_SA_FF_small_attempt_8am.csv')


    SA_4P = {
    'max_attempts':10,
    'schedule':mlrose.GeomDecay(init_temp=100, decay=0.8),
    'max_iters':max_iters_list_full,
    'random_state':rand_list_full
    }

    results_df, curve_output_list = fitness_by_iter('KS', problem_4P, SA_4P['max_iters'], SA_4P['random_state']\
    , schedule=SA_4P['schedule'], max_attempts=SA_4P['max_attempts'], curve=True)
    results_df.to_csv(output_location + 'final_SA_4P_attempt_8am.csv')
    results_df, curve_output_list = fitness_by_iter('SA', problem_4P_big, SA_4P['max_iters'], SA_4P['random_state']\
    , schedule=SA_4P['schedule'], max_attempts=SA_4P['max_attempts'], curve=True)
    results_df.to_csv(output_location + 'final_SA_4P_big_attempt_8am.csv')
    results_df, curve_output_list = fitness_by_iter('SA', problem_4P, SA_4P['max_iters'], SA_4P['random_state']\
    , schedule=SA_4P['schedule'], max_attempts=SA_4P['max_attempts'], curve=True)
    results_df.to_csv(output_location + 'final_SA_4P_small_attempt_8am.csv')
    '''
    print("picking up where I left off on making the final curves..")

    SA_KS = {
        'max_attempts': 10,
        'schedule': mlrose.GeomDecay(init_temp=1000, decay=0.99),
        'max_iters': max_iters_list_full,
        'random_state': rand_list_full
    }
    ''' more fitness by iteration calculations
    results_df, curve_output_list = fitness_by_iter('SA', problem_KS, SA_KS['max_iters'], SA_KS['random_state']\
    , schedule=SA_KS['schedule'], max_attempts=SA_KS['max_attempts'], curve=True)
    results_df.to_csv(output_location + 'final_SA_KS_attempt_8am.csv')
    results_df, curve_output_list = fitness_by_iter('SA', problem_KS_big, SA_KS['max_iters'], SA_KS['random_state']\
    , schedule=SA_KS['schedule'], max_attempts=SA_KS['max_attempts'], curve=True)
    results_df.to_csv(output_location + 'final_SA_KS_big_attempt_8am.csv')
    results_df, curve_output_list = fitness_by_iter('SA', problem_KS_small, SA_KS['max_iters'], SA_KS['random_state']\
    , schedule=SA_KS['schedule'], max_attempts=SA_KS['max_attempts'], curve=True)
    results_df.to_csv(output_location + 'final_SA_KS_small_attempt_8am.csv')
    '''

    RHC_KS = {
        'max_attempts': 50,
        'restarts': 20,
        'max_iters': max_iters_list_full,
        'random_state': rand_list_full
    }
    '''
    results_df, curve_output_list = fitness_by_iter('RHC', problem_KS, RHC_KS['max_iters'], RHC_KS['random_state']\
    , restarts=RHC_KS['restarts'], max_attempts=RHC_KS['max_attempts'], curve=True)
    results_df.to_csv(output_location + 'final_RHS_KS_attempt_8am.csv')
    results_df, curve_output_list = fitness_by_iter('RHC', problem_KS_big, RHC_KS['max_iters'], RHC_KS['random_state']\
    , restarts=RHC_KS['restarts'], max_attempts=RHC_KS['max_attempts'], curve=True)
    results_df.to_csv(output_location + 'final_RHS_KS_big_attempt_8am.csv')
    results_df, curve_output_list = fitness_by_iter('RHC', problem_KS_small, RHC_KS['max_iters'], RHC_KS['random_state']\
    , restarts=RHC_KS['restarts'], max_attempts=RHC_KS['max_attempts'], curve=True)
    results_df.to_csv(output_location + 'final_RHS_KS_small_attempt_8am.csv')
    '''
    RHC_FF = {
        'max_attempts': 50,
        'restarts': 20,
        'max_iters': max_iters_list_full,
        'random_state': rand_list_full
    }
    '''
    results_df, curve_output_list = fitness_by_iter('RHC', problem_FF, RHC_FF['max_iters'], RHC_FF['random_state']\
    , restarts=RHC_FF['restarts'], max_attempts=RHC_FF['max_attempts'], curve=True)
    results_df.to_csv(output_location + 'final_RHS_FF_attempt_8am.csv')
    results_df, curve_output_list = fitness_by_iter('RHC', problem_FF_big, RHC_FF['max_iters'], RHC_FF['random_state']\
    , restarts=RHC_FF['restarts'], max_attempts=RHC_FF['max_attempts'], curve=True)
    results_df.to_csv(output_location + 'final_RHS_FF_big_attempt_8am.csv')
    results_df, curve_output_list = fitness_by_iter('RHC', problem_FF_small, RHC_FF['max_iters'], RHC_FF['random_state']\
    , restarts=RHC_FF['restarts'], max_attempts=RHC_FF['max_attempts'], curve=True)
    results_df.to_csv(output_location + 'final_RHS_FF_small_attempt_8am.csv')
    '''

    RHC_4P = {
        'max_attempts': 50,
        'restarts': 20,
        'max_iters': max_iters_list_full,
        'random_state': rand_list_full
    }
    '''
    results_df, curve_output_list = fitness_by_iter('RHC', problem_4P, RHC_4P['max_iters'], RHC_4P['random_state']\
    , restarts=RHC_4P['restarts'], max_attempts=RHC_4P['max_attempts'], curve=True)
    results_df.to_csv(output_location + 'final_RHS_4P_attempt_8am.csv')
    results_df, curve_output_list = fitness_by_iter('RHC', problem_4P_small, RHC_4P['max_iters'], RHC_4P['random_state']\
    , restarts=RHC_4P['restarts'], max_attempts=RHC_4P['max_attempts'], curve=True)
    results_df.to_csv(output_location + 'final_RHS_4P_small_attempt_8am.csv')
    results_df, curve_output_list = fitness_by_iter('RHC', problem_4P_big, RHC_4P['max_iters'], RHC_4P['random_state']\
    , restarts=RHC_4P['restarts'], max_attempts=RHC_4P['max_attempts'], curve=True)
    results_df.to_csv(output_location + 'final_RHS_4P_big_attempt_8am.csv')
    '''

    ## where it stopped
    print("I will now make the complexity curves for other algos")
    SA_4P_hacked = {
        'max_attempts': 10,
        'schedule': mlrose.GeomDecay(init_temp=100, decay=0.99),
        'max_iters': max_iters_list_full,
        'random_state': rand_list_full
    }
    '''
    results_df, curve_output_list = fitness_by_iter('SA', problem_4P, SA_4P['max_iters'], SA_4P['random_state']\
    , schedule=SA_4P_hacked['schedule'], max_attempts=SA_4P['max_attempts'], curve=True)
    results_df.to_csv(output_location + 'final_SA_4P_decay_99.csv')

    results_df, curve_output_list = fitness_by_iter('SA', problem_4P, SA_4P['max_iters'], SA_4P['random_state']\
    , schedule=mlrose.GeomDecay(init_temp=1, decay=0.8), max_attempts=SA_4P['max_attempts'], curve=True)
    results_df.to_csv(output_location + 'final_SA_4P_T_1_decay_80.csv')

    results_df, curve_output_list = fitness_by_iter('GA', problem_KS, GA_KS['max_iters'], GA_KS['random_state']\
    , pop_size=GA_KS['pop_size'], max_attempts=GA_KS['max_attempts'], curve=True, mutation_prob=0.1)
    results_df.to_csv(output_location + 'final_GA_KS_mutation_01.csv')
    '''
    results_df, curve_output_list = fitness_by_iter('GA', problem_KS, GA_KS['max_iters'], GA_KS['random_state']\
    , pop_size=100, max_attempts=GA_KS['max_attempts'], curve=True, mutation_prob=0.2)
    results_df.to_csv(output_location + 'final_GA_KS_mutation_02_pop_100.csv')

    ## Need a few more MIMIC chart inputs
    #print("Need a few more MIMIC chart inputs, so I will now make those")
    #print("Next FF p=100 keep=0.2")
    ''' MIMIC inputs for charts
Beispiel #5
0
def runPart1(savePath):
    fitness = mlrose.FourPeaks(t_pct=0.15)
    init_state = None
    fourPeaksProblem = mlrose.DiscreteOpt(length=12,
        fitness_fn=fitness, maximize=True, max_val=2)

    part1_1 = Part1(name='Four Peaks', fitness=fitness,
                    problem=fourPeaksProblem, init_state=init_state)
    part1_1.runAll(savePath)

    fitness = mlrose.Queens()
    init_state = None
    eightQueensProblem = mlrose.DiscreteOpt(length=8,
        fitness_fn=fitness, maximize=False, max_val=8)
    part1_2 = Part1(name='Eight Queens', fitness=fitness,
                    problem=eightQueensProblem, init_state=init_state)
    part1_2.runAll(savePath)

    fitness = mlrose.SixPeaks(t_pct=0.15)
    init_state = None
    sixPeaksProblem = mlrose.DiscreteOpt(length=11,
        fitness_fn=fitness, maximize=True, max_val=2)
    part1_4 = Part1(name='Six Peaks', fitness=fitness,
                    problem=sixPeaksProblem, init_state=init_state)
    part1_4.runAll(savePath)

    fitness = mlrose.FlipFlop()
    init_state = None
    flipFlopProblem = mlrose.DiscreteOpt(length=7,
        fitness_fn=fitness, maximize=True, max_val=2)
    part1_5 = Part1(name='Flip Flop - 7', fitness=fitness,
                    problem=flipFlopProblem, init_state=init_state)
    part1_5.runAll(savePath)


    fitness = mlrose.FlipFlop()
    init_state = None
    flipFlopProblem = mlrose.DiscreteOpt(length=100,
        fitness_fn=fitness, maximize=True, max_val=2)
    part1_5 = Part1(name='Flip Flop - 100', fitness=fitness,
                    problem=flipFlopProblem, init_state=init_state)
    part1_5.runAll(savePath)

    fitness = mlrose.Queens()
    init_state = None
    eightQueensProblem = mlrose.DiscreteOpt(length=80,
        fitness_fn=fitness, maximize=False, max_val=8)
    part1_2 = Part1(name='Eighty Queens', fitness=fitness,
                    problem=eightQueensProblem, init_state=init_state)
    part1_2.runAll(savePath)

    fitness = mlrose.FlipFlop()
    init_state = None
    flipFlopProblem = mlrose.DiscreteOpt(length=15,
        fitness_fn=fitness, maximize=True, max_val=2)
    part1_5 = Part1(name='Flip Flop - 15', fitness=fitness,
                    problem=flipFlopProblem, init_state=init_state)
    part1_5.runAll(savePath)


    edges = [(0, 1), (0, 2), (0, 4), (1, 3), (2, 0), (2, 3), (3, 4)]
    fitness = mlrose.MaxKColor(edges)
    init_state = None
    maxKColorsProblem = mlrose.DiscreteOpt(length=7,
        fitness_fn=fitness, maximize=False, max_val=2)
    part1_3 = Part1(name='Max-K Color', fitness=fitness,
                    problem=maxKColorsProblem, init_state=init_state)
    part1_3.runAll(savePath)

    # =============================================================
    #  Source - Tutorial from MLRose Docs
    #  https://mlrose.readthedocs.io/en/stable/source/tutorial2.html
    # 
    # =============================================================
    # Create list of city coordinates
    coords_list = [(1, 1), (4, 2), (5, 2), (6, 4), (4, 4), (3, 6), (1, 5), (2, 3)]

    # Initialize fitness function object using coords_list
    fitness_coords = mlrose.TravellingSales(coords = coords_list)

    # Create list of distances between pairs of cities
    dist_list = [(0, 1, 3.1623), (0, 2, 4.1231), (0, 3, 5.8310), (0, 4, 4.2426), \
                (0, 5, 5.3852), (0, 6, 4.0000), (0, 7, 2.2361), (1, 2, 1.0000), \
                (1, 3, 2.8284), (1, 4, 2.0000), (1, 5, 4.1231), (1, 6, 4.2426), \
                (1, 7, 2.2361), (2, 3, 2.2361), (2, 4, 2.2361), (2, 5, 4.4721), \
                (2, 6, 5.0000), (2, 7, 3.1623), (3, 4, 2.0000), (3, 5, 3.6056), \
                (3, 6, 5.0990), (3, 7, 4.1231), (4, 5, 2.2361), (4, 6, 3.1623), \
                (4, 7, 2.2361), (5, 6, 2.2361), (5, 7, 3.1623), (6, 7, 2.2361)]

    # Initialize fitness function object using dist_list
    fitness_dists = mlrose.TravellingSales(distances = dist_list)

    # Define optimization problem object
    problem_fit = mlrose.TSPOpt(length = 8, fitness_fn = fitness_coords, maximize=False)

    coords_list = [(1, 1), (4, 2), (5, 2), (6, 4), (4, 4), (3, 6), (1, 5), (2, 3)]

    # Define optimization problem object
    problem_no_fit = mlrose.TSPOpt(length = 8, coords = coords_list, maximize=False)

    part1_6 = Part1(name='TSP', fitness=coords_list,
                    problem=problem_no_fit, init_state=None)
    part1_6.runAll(savePath)

    # Knapsack
    weights = np.random.randint(2, high=20, size=50)
    values = np.random.randint(2, high=100, size=50)
    max_weight_pct = 0.8
    fitness = mlrose.Knapsack(weights, values, max_weight_pct)
    knapsackProblem = mlrose.DiscreteOpt(length=50,
        fitness_fn=fitness, maximize=False, max_val=2)

    part1_7 = Part1(name='Knapsack', fitness=fitness,
                    problem=knapsackProblem, init_state=None)
    part1_7.runAll(savePath)
Beispiel #6
0
gen_evals=[]
mimic_times=[]
mimic_evals=[]
for i in range(10, 51, 10):
    if i==0:
        continue
#     ex = {"weights": [random.randint(1, 20) for i in range(i)], "values": [random.randint(1, 10) for i in range(i)], "state": np.array([random.randint(0, 2) for i in range(i)])}
    input_sizes.append(i)
#     weights = ex['weights']
#     values = ex['values']
#     state = ex['state']
#     edges = [(0, 1), (0, 2), (0, 4), (1, 3), (2, 0), (2, 3), (3, 4)]
#     state = np.array([random.randint(1, 20) for i in range(i)])
    state = np.array([random.randint(0, 2) for i in range(i)])
#     fitness = mlrose_hiive.FourPeaks(t_pct=0.15)
    fitness = mlrose_hiive.FlipFlop()
    problem = mlrose_hiive.DiscreteOpt(length = len(state), fitness_fn = fitness, maximize = True, max_val = int(max(state))+1)
#     problem = mlrose_hiive.DiscreteOpt(length = 5, fitness_fn = fitness, maximize = False, max_val = 2)
#     problem = mlrose_hiive.DiscreteOpt(length = len(state), fitness_fn = fitness, maximize = True, max_val = int(max(state))+1)
    times = []
    best_scores = []

    start_time = time.time()
    best_state, best_fitness, fitness_curve = sa(problem,state, 10, 1000)
    elapsed_time = time.time() - start_time
    print(elapsed_time)
    times.append(elapsed_time*1000)
    best_scores.append(best_fitness)
    sa_times.append(elapsed_time*1000)
    sa_evals.append(len(fitness_curve))
    plt.close()
Beispiel #7
0
def flip_flop():
    print('Flip Flop')
    sa = []
    rhc = []
    ga = []
    mim = []

    input_sizes = [100]

    for i in input_sizes:
        state = np.array([np.random.randint(0, 2) for i in range(i)])
        # state = np.zeros(100)
        # fitness = mlr.FourPeaks(0.1)
        fitness = mlr.FlipFlop()
        problem = mlr.DiscreteOpt(length=i,
                                  fitness_fn=fitness,
                                  maximize=True,
                                  max_val=2)

        best_state, best_fitness, fitness_curve, time = randomized_hill_climb(
            problem, state, 10, 1000)
        rhc.append((best_fitness, fitness_curve, time))

        best_state, best_fitness, fitness_curve, time = simulated_annealing(
            problem, state, 10, 1000)
        sa.append((best_fitness, fitness_curve, time))

        best_state, best_fitness, fitness_curve, time = genetic_algorithm(
            problem, state, 10, 1000)
        ga.append((best_fitness, fitness_curve, time))

        best_state, best_fitness, fitness_curve, time = mimic(
            problem, state, 10, 1000)
        mim.append((best_fitness, fitness_curve, time))

    plot_data([i + 1 for i in range(len(rhc[0][1]))],
              rhc[0][1],
              title="Flip Flop (Input Size = " + str(len(state)) + ")",
              x_label="Iterations",
              y_label="Fitness Score",
              color="blue",
              label='RHC')

    plot_data([i + 1 for i in range(len(sa[0][1]))],
              sa[0][1],
              title="Flip Flop (Input Size = " + str(len(state)) + ")",
              x_label="Iterations",
              y_label="Fitness Score",
              color="orange",
              label='SA')

    plot_data([i + 1 for i in range(len(ga[0][1]))],
              ga[0][1],
              title="Flip Flop (Input Size = " + str(len(state)) + ")",
              x_label="Iterations",
              y_label="Fitness Score",
              color="green",
              label='GA')

    plot_data([i + 1 for i in range(len(mim[0][1]))],
              mim[0][1],
              title="Flip Flop (Input Size = " + str(len(state)) + ")",
              x_label="Iterations",
              y_label="Fitness Score",
              color="red",
              label='MIMIC')

    title = 'Flip Flop'

    plt.savefig('output/' + title + '.png')
    plt.close()
Beispiel #8
0
        return 100
    return 0


def cf2(state):
    score = 0
    for i in range(len(state)):
        score += (state[i] * (i + 1) % 7)
    return score


FITNESS_FUNCS = {
    'fourpeaks': mlrose.FourPeaks(),
    'onemax': mlrose.OneMax(),
    #    'path': mlrose.CustomFitness(path, problem_type='discrete'),
    'flipflop': mlrose.FlipFlop(),
    #    'cliffs': mlrose.CustomFitness(cf1, problem_type='discrete'),
    #    'cliffs': mlrose.CustomFitness(is_larger, problem_type='discrete'),
    #    'max2color': mlrose.MaxKColorGenerator.generate(seed=42, number_of_nodes=PROBLEM_LENGTH, max_colors=2),
    #    'mod': mlrose.CustomFitness(cf2, problem_type='discrete')
}

RANDOM_STATE = 42
DEFAULTS = {'random_state': RANDOM_STATE, 'curve': True, 'max_attempts': 10}

ALGORITHMS = {
    'rhc': lambda p: mlrose.random_hill_climb(p, **DEFAULTS),
    'sa': lambda p: mlrose.simulated_annealing(p, **DEFAULTS),
    'ga': lambda p: mlrose.genetic_alg(p, **DEFAULTS),
    'mimic': lambda p: mlrose.mimic(p, **DEFAULTS)
}
Beispiel #9
0
 def run_FlipFlop(self, mode=None):
     fitness_fn = mlrose.FlipFlop()
     self.run_complexity(fitness_fn, mode)
import numpy as np
import pandas as pd
import param_search
import mlrose_hiive as mlrose
import matplotlib.pyplot as plt
import os

this_dir = os.path.dirname(__file__)
#===================================================================================================
# STEP1: DEFINE A FITNESS FUNCTION, PROBLEM, AND OUTPUT DIRECTORY
#===================================================================================================
fitness = mlrose.FlipFlop()
problem = mlrose.DiscreteOpt(length=100,
                             fitness_fn=fitness,
                             maximize=True,
                             max_val=2)
problem_name = 'flipflop'
output_dir = os.path.join(
    this_dir, problem_name
)  #r"C:\Users\AREHAN2\Documents\omscs\CS7641\randomized_optimization\4peaks"

#===================================================================================================
# STEP2: RUN OPTIMIZATIONS FOR A RANGE OF HYPERPARAMETERS FOR RHC, SA, GA, AND MIMIC
#===================================================================================================
param_search.run_param_search(problem, output_dir)

#===================================================================================================
# STEP3: READ IN THE DATA REGARDING THE RAN OPTIMIZATION
#===================================================================================================
rhc_run_curves = pd.read_csv(
    os.path.join(output_dir, 'RHC', 'rhc__RHC__curves_df.csv')
def fitness_counter(state):
    global eval_count
    fitness = mlrose.FlipFlop()
    eval_count += 1
    return fitness.evaluate(state)