def test_train_with_validation_check_recorded(self):
        trainer = SgdEarlyStopTrainer()
        trainable = MagicMock()
        trainable.update_params.return_value = (0.66, 80.3)
        trainable.evaluate_validation_set.return_value = (1.25, 50.1)
        train_watcher = _TrainWatcherRecorder()

        (epochs, validation_epochs) = trainer.train(
            trainable,
            np.array([1, 2, 3]),
            np.array([1, 0, 1]),
            None,
            None,
            train_watcher,
            epochs=6,
            validation_gap=2,
        )

        self.assertEqual(epochs, 6)
        self.assertEqual(validation_epochs, 3)
        self.assertEqual(train_watcher.epochs, list(range(6)))
        self.assertEqual(train_watcher.costs, [0.66] * 6)
        self.assertEqual(train_watcher.accuracies, [80.3] * 6)
        self.assertEqual(train_watcher.validation_epochs, [0, 2, 4])
        self.assertEqual(train_watcher.validation_costs, [1.25] * 3)
        self.assertEqual(train_watcher.validation_accuracies, [50.1] * 3)
    def test_default_patience_can_be_set_in_the_constructor(self):
        trainer = SgdEarlyStopTrainer(1)
        trainable = _PlaybackTrainable(
            [0.1] * 9,
            [90.0] * 9,
            [0.1, 0.2, 0.05],
            [89.0] * 3,
        )
        train_watcher = _TrainWatcherRecorder()

        (epochs, validation_epochs) = trainer.train(
            trainable,
            np.array([3, 2, 1]),
            np.array([1, 1, 0]),
            None,
            None,
            train_watcher,
            epochs=3,
            validation_gap=1,
            minibatch_size=1,
        )

        self.assertEqual(epochs, 2)
        self.assertEqual(validation_epochs, 2)
        self.assertEqual(train_watcher.epochs, list(range(2)))
        self.assertEqual(train_watcher.costs, [0.1] * 2)
        self.assertEqual(train_watcher.accuracies, [90.0] * 2)
        self.assertEqual(train_watcher.validation_epochs, list(range(2)))
        self.assertEqual(train_watcher.validation_costs, [0.1, 0.2])
        self.assertEqual(train_watcher.validation_accuracies, [89.0] * 2)
    def test_train_multiple_epoch_check_recorded_and_trainable(self):
        trainer = SgdEarlyStopTrainer()
        trainable = MagicMock()
        trainable.update_params.return_value = (5.0, 15.5)
        train_watcher = _TrainWatcherRecorder()

        epochs, validation_epochs = trainer.train(
            trainable,
            np.array([1, 2, 3]),
            np.array([1, 0, 1]),
            None,
            None,
            train_watcher,
            epochs=3,
        )

        self.assertEqual(epochs, 3)
        self.assertEqual(validation_epochs, 0)
        self.assertEqual(train_watcher.epochs, [0, 1, 2])
        self.assertEqual(train_watcher.costs, [5.0, 5.0, 5.0])
        self.assertEqual(train_watcher.accuracies, [15.5, 15.5, 15.5])
        self.assertEqual(train_watcher.validation_epochs, [])
        self.assertEqual(train_watcher.validation_costs, [])
        self.assertEqual(train_watcher.validation_accuracies, [])

        self.assertEqual(trainable.update_params.call_count, 3)
        self.assertEqual(trainable.evaluate_validation_set.call_count, 0)
    def test_train_with_minibatches_check_it_stops_early(self):
        trainer = SgdEarlyStopTrainer()
        trainable = MagicMock()
        trainable.update_params.return_value = (0.66, 80.3)
        trainable.evaluate_validation_set.return_value = (1.25, 50.1)
        train_watcher = _TrainWatcherRecorder()

        (epochs, validation_epochs) = trainer.train(
            trainable,
            np.array([10, 20, 30]),
            np.array([0, 0, 0]),
            None,
            None,
            train_watcher,
            epochs=15,
            validation_gap=2,
            minibatch_size=2,
        )

        self.assertEqual(epochs, 11)
        self.assertEqual(validation_epochs, 6)
        self.assertEqual(train_watcher.epochs, list(range(11)))
        self.assertEqual(train_watcher.costs, [0.66] * 11)
        self.assertEqual(train_watcher.accuracies, [80.3] * 11)
        self.assertEqual(train_watcher.validation_epochs, [0, 2, 4, 6, 8, 10])
        self.assertEqual(train_watcher.validation_costs, [1.25] * 6)
        self.assertEqual(train_watcher.validation_accuracies, [50.1] * 6)

        self.assertEqual(trainable.update_params.call_count, 22)
        self.assertEqual(trainable.evaluate_validation_set.call_count, 6)
    def test_train_single_epoch_check_recorded_and_trainable(self):
        trainer = SgdEarlyStopTrainer()
        trainable = MagicMock()
        trainable.update_params.return_value = (0.9, 55.0)
        train_watcher = _TrainWatcherRecorder()

        (epochs, validation_epochs) = trainer.train(
            trainable,
            np.array([1, 2, 3]),
            np.array([1, 0, 1]),
            None,
            None,
            train_watcher,
            epochs=1,
        )

        self.assertEqual(epochs, 1)
        self.assertEqual(validation_epochs, 0)
        self.assertEqual(train_watcher.epochs, [0])
        self.assertEqual(train_watcher.costs, [0.9])
        self.assertEqual(train_watcher.accuracies, [55.0])
        self.assertEqual(train_watcher.validation_epochs, [])
        self.assertEqual(train_watcher.validation_costs, [])
        self.assertEqual(train_watcher.validation_accuracies, [])

        self.assertEqual(trainable.update_params.call_count, 1)
        self.assertEqual(trainable.evaluate_validation_set.call_count, 0)
    def test_train_it_should_stop_as_soon_patience_is_surpassed(self):
        trainer = SgdEarlyStopTrainer()
        trainable = _PlaybackTrainable(
            [0.1] * 9,
            [90.0] * 9,
            [0.1, 0.2, 0.05],
            [89.0] * 3,
        )
        train_watcher = _TrainWatcherRecorder()

        (epochs, validation_epochs) = trainer.train(
            trainable,
            np.array([3, 2, 1]),
            np.array([1, 1, 0]),
            None,
            None,
            train_watcher,
            epochs=3,
            validation_gap=1,
            minibatch_size=1,
            patience=1,
        )

        self.assertEqual(epochs, 2)
        self.assertEqual(validation_epochs, 2)
        self.assertEqual(train_watcher.epochs, list(range(2)))
        self.assertEqual(train_watcher.costs, [0.1] * 2)
        self.assertEqual(train_watcher.accuracies, [90.0] * 2)
        self.assertEqual(train_watcher.validation_epochs, list(range(2)))
        self.assertEqual(train_watcher.validation_costs, [0.1, 0.2])
        self.assertEqual(train_watcher.validation_accuracies, [89.0] * 2)

        self.assertEqual(trainable.update_params_call_count, 6)
        self.assertEqual(trainable.evaluate_validation_set_call_count, 2)
    def test_train_with_small_patience_check_it_stops_early(self):
        trainer = SgdEarlyStopTrainer()
        trainable = MagicMock()
        trainable.update_params.return_value = (0.33, 81)
        trainable.evaluate_validation_set.return_value = (5.4, 99.0)
        train_watcher = _TrainWatcherRecorder()

        (epochs, validation_epochs) = trainer.train(
            trainable,
            np.array([1, 2, 3]),
            np.array([1, 1, 1]),
            None,
            None,
            train_watcher,
            epochs=10,
            validation_gap=1,
            patience=2,
        )

        self.assertEqual(epochs, 3)
        self.assertEqual(validation_epochs, 3)
        self.assertEqual(train_watcher.epochs, list(range(3)))
        self.assertEqual(train_watcher.costs, [0.33] * 3)
        self.assertEqual(train_watcher.accuracies, [81] * 3)
        self.assertEqual(train_watcher.validation_epochs, list(range(3)))
        self.assertEqual(train_watcher.validation_costs, [5.4] * 3)
        self.assertEqual(train_watcher.validation_accuracies, [99.0] * 3)

        self.assertEqual(trainable.update_params.call_count, 3)
        self.assertEqual(trainable.evaluate_validation_set.call_count, 3)
    def test_train_with_multiple_minibatches_check_recorded_and_trainable(
            self):
        trainer = SgdEarlyStopTrainer()
        trainable = MagicMock()
        trainable.update_params.return_value = (1.2, 70.5)
        train_watcher = _TrainWatcherRecorder()

        (epochs, validation_epochs) = trainer.train(
            trainable,
            np.array([1, 2, 3]),
            np.array([0.1, 0.2, 0.3]),
            None,
            None,
            train_watcher,
            epochs=5,
            minibatch_size=1,
        )

        self.assertEqual(epochs, 5)
        self.assertEqual(validation_epochs, 0)
        self.assertEqual(train_watcher.epochs, list(range(5)))
        self.assertEqual(train_watcher.costs, [1.2] * 5)
        self.assertEqual(train_watcher.accuracies, [70.5] * 5)
        self.assertEqual(train_watcher.validation_epochs, [])
        self.assertEqual(train_watcher.validation_costs, [])
        self.assertEqual(train_watcher.validation_accuracies, [])

        self.assertEqual(trainable.update_params.call_count, 15)
        self.assertEqual(trainable.evaluate_validation_set.call_count, 0)
    def test_train_with_measurer_check_accuracies(self):
        arch = _PlaybackArch(
            [0.05] * 9,
            [np.array([[0, 1], [1, 0], [0, 1]])] * 9,
            [0.1, 0.01, 0.001],
            [np.array([[1, 0], [1, 0]])] * 3,
        )
        model = Model(arch)
        train_watcher = _TrainWatcherRecorder()

        model.train(
            np.array([[1], [2], [3]]),
            np.array([[0, 1], [0, 1], [0, 1]]),
            np.array([[1], [2]]),
            np.array([[0, 1], [0, 1]]),
            SgdEarlyStopTrainer(),
            ProbsMeasurer(),
            train_watcher,
            epochs=3,
            validation_gap=1,
            minibatch_size=1,
            patience=1,
            seed=0,
        )

        self.assertEqual(train_watcher.epochs, list(range(3)))
        self.assertEqual(train_watcher.costs, [0.05] * 3)
        self.assertEqual(train_watcher.accuracies, [2 / 3] * 3)
        self.assertEqual(train_watcher.validation_epochs, list(range(3)))
        self.assertEqual(train_watcher.validation_costs, [0.1, 0.01, 0.001])
        self.assertEqual(train_watcher.validation_accuracies, [0] * 3)
    def test_train_assert_data_is_passed_and_shuffled(self):
        trainer = SgdEarlyStopTrainer()
        trainable = MagicMock()
        trainable.update_params.return_value = (0.66, 80.3)
        trainable.evaluate_validation_set.return_value = (1.25, 50.1)

        epochs, validation_epochs = trainer.train(
            trainable,
            np.array([1, 2, 3, 4, 5]),
            np.array([0, 1, 0, 1, 0]),
            np.array([1, 5]),
            np.array([0, 0]),
            None,
            epochs=6,
            validation_gap=2,
            minibatch_size=10,
            patience=2,
            seed=0,
        )

        self.assertEqual(epochs, 5)
        self.assertEqual(validation_epochs, 3)

        (train_dataset, train_labels), _ = trainable.update_params.call_args
        self.assertTrue(
            np.array_equal(
                train_dataset,
                np.array([5, 3, 4, 2, 1]),
            ))
        self.assertTrue(
            np.array_equal(
                train_labels,
                np.array([0, 0, 1, 1, 0]),
            ))

        (validation_dataset,
         validation_labels), _ = trainable.evaluate_validation_set.call_args
        self.assertTrue(np.array_equal(
            validation_dataset,
            np.array([1, 5]),
        ))
        self.assertTrue(np.array_equal(
            validation_labels,
            np.array([0, 0]),
        ))
Beispiel #11
0
def get_trainer(trainer, patience=5):
    if trainer == 'simple':
        return SimpleTrainer()
    elif trainer == 'sgd':
        return SgdTrainer()
    elif trainer == 'early_stop':
        return StaticPatienceDecorator(EarlyStopTrainer(), patience)
    elif trainer == 'sgd_early_stop':
        return StaticPatienceDecorator(SgdEarlyStopTrainer(), patience)
    def test_train_check_results_are_empty_or_zero(self):
        trainer = SgdEarlyStopTrainer()
        trainable = MagicMock()
        train_watcher = _TrainWatcherRecorder()

        epochs, validation_epochs = trainer.train(
            trainable,
            np.array([1, 2, 3]),
            np.array([0, 1, 0]),
            None,
            None,
            train_watcher,
        )

        self.assertEqual(epochs, 0)
        self.assertEqual(validation_epochs, 0)

        self.assertEqual(train_watcher.epochs, [])
        self.assertEqual(train_watcher.costs, [])
        self.assertEqual(train_watcher.accuracies, [])
        self.assertEqual(train_watcher.validation_epochs, [])
        self.assertEqual(train_watcher.validation_costs, [])
        self.assertEqual(train_watcher.validation_accuracies, [])
    def test_train_having_decreasing_cost_check_it_does_not_stops_early(self):
        trainer = SgdEarlyStopTrainer()
        validation_costs = [
            10.0, 9.8, 11.0, 0.5, 0.4, 0.7, 0.8, 0.1, 0.01, 0.001
        ]
        trainable = _PlaybackTrainable(
            [0.1] * 30,
            [90.0] * 30,
            validation_costs,
            [89.0] * 10,
        )
        train_watcher = _TrainWatcherRecorder()

        (epochs, validation_epochs) = trainer.train(
            trainable,
            np.array([10, 21, 32]),
            np.array([0, 0, 0]),
            None,
            None,
            train_watcher,
            epochs=10,
            validation_gap=1,
            minibatch_size=1,
            patience=3,
        )

        self.assertEqual(epochs, 10)
        self.assertEqual(validation_epochs, 10)
        self.assertEqual(train_watcher.epochs, list(range(10)))
        self.assertEqual(train_watcher.costs, [0.1] * 10)
        self.assertEqual(train_watcher.accuracies, [90.0] * 10)
        self.assertEqual(train_watcher.validation_epochs, list(range(10)))
        self.assertEqual(train_watcher.validation_costs, validation_costs)
        self.assertEqual(train_watcher.validation_accuracies, [89.0] * 10)

        self.assertEqual(trainable.update_params_call_count, 30)
        self.assertEqual(trainable.evaluate_validation_set_call_count, 10)
    def test_train_assert_recorded_and_returned_are_identical(self):
        arch = MagicMock()
        arch.update_params.return_value = (0.1, None)
        arch.check_cost.return_value = (0.66, None)
        model = Model(arch)
        trainer = SgdEarlyStopTrainer()
        measurer = MagicMock()
        measurer.measure.return_value = 90.5
        train_watcher = _TrainWatcherRecorder()

        (
            epochs,
            costs,
            accuracies,
            validation_epochs,
            validation_costs,
            validation_accuracies,
        ) = model.train(
            np.array([1, 2, 3]),
            np.array([1, 0, 0]),
            None,
            None,
            trainer,
            measurer,
            train_watcher,
            epochs=9,
            validation_gap=2,
            minibatch_size=2,
            patience=1,
        )

        self.assertEqual(epochs, 3)
        self.assertEqual(train_watcher.epochs, list(range(epochs)))
        self.assertEqual(train_watcher.costs, costs)
        self.assertEqual(train_watcher.accuracies, accuracies)
        self.assertEqual(len(train_watcher.validation_epochs),
                         validation_epochs)
        self.assertEqual(train_watcher.validation_costs, validation_costs)
        self.assertEqual(train_watcher.validation_accuracies,
                         validation_accuracies)

        self.assertEqual(arch.update_params.call_count, 6)
        self.assertEqual(arch.check_cost.call_count, 2)
    def test_train_check_returned_and_call_count(self):
        arch = MagicMock()
        arch.update_params.return_value = (0.4, None)
        arch.check_cost.return_value = (0.66, None)
        model = Model(arch)
        trainer = SgdEarlyStopTrainer()
        measurer = MagicMock()
        measurer.measure.return_value = 60.5

        (
            epochs,
            costs,
            accuracies,
            validation_epochs,
            validation_costs,
            validation_accuracies,
        ) = model.train(
            np.array([1, 2, 3]),
            np.array([0, 1, 0]),
            None,
            None,
            trainer,
            measurer,
            None,
            epochs=8,
            validation_gap=1,
            minibatch_size=1,
            patience=2,
        )

        self.assertEqual(epochs, 3)
        self.assertEqual(costs, [0.4] * 3)
        self.assertEqual(accuracies, [60.5] * 3)
        self.assertEqual(validation_epochs, 3)
        self.assertEqual(validation_costs, [0.66] * 3)
        self.assertEqual(validation_accuracies, [60.5] * 3)

        self.assertEqual(arch.update_params.call_count, 9)
        self.assertEqual(arch.check_cost.call_count, 3)
    def test_train_having_decreasing_cost_instance_check_it_does_not_stops_early(
            self):
        arch = _PlaybackArch(
            [0.05] * 9,
            [None] * 9,
            [0.1, 0.01, 0.001],
            [None] * 3,
        )
        model = Model(arch)
        measurer = MagicMock()
        measurer.measure.return_value = 90.5
        train_watcher = _TrainWatcherRecorder()

        model.train(
            np.array([1, 2, 3]),
            np.array([0, 1, 1]),
            None,
            None,
            SgdEarlyStopTrainer(),
            measurer,
            train_watcher,
            epochs=3,
            validation_gap=1,
            minibatch_size=1,
            patience=1,
            seed=0,
        )

        self.assertEqual(train_watcher.epochs, list(range(3)))
        self.assertEqual(train_watcher.costs, [0.05] * 3)
        self.assertEqual(train_watcher.accuracies, [90.5] * 3)
        self.assertEqual(train_watcher.validation_epochs, list(range(3)))
        self.assertEqual(train_watcher.validation_costs, [0.1, 0.01, 0.001])
        self.assertEqual(train_watcher.validation_accuracies, [90.5] * 3)

        self.assertEqual(arch.update_params_call_count, 9)
        self.assertEqual(arch.check_cost_call_count, 3)