def test_neural_tree_network_copy(self):
     net = NeuralTreeNet(3, empty=False)
     net.append(NeuralTreeNode(1, activation='identity'),
                inputs=[3])
     net2 = net.copy()
     X = numpy.random.randn(2, 3)
     self.assertEqualArray(net.predict(X), net2.predict(X))
Beispiel #2
0
 def test_neural_tree_network_training_weights(self):
     net = NeuralTreeNet(3, empty=False)
     net.append(NeuralTreeNode(1, activation='identity'), inputs=[3])
     w = net.training_weights
     self.assertEqual(w.shape, (6, ))
     self.assertEqual(w[0], 0)
     self.assertEqualArray(w[1:4], [1, 1, 1])
     delta = numpy.arange(6) - 0.5
     net.update_training_weights(delta)
     w2 = net.training_weights
     self.assertEqualArray(w2, w + delta)
Beispiel #3
0
 def test_neural_tree_network_append(self):
     net = NeuralTreeNet(3, empty=False)
     self.assertRaise(lambda: net.append(
         NeuralTreeNode(2, activation='identity'), inputs=[3]))
     net.append(NeuralTreeNode(1, activation='identity'), inputs=[3])
     self.assertEqual(net.size_, 5)
     last_node = net.nodes[-1]
     X = numpy.random.randn(2, 3)
     got = net.predict(X)
     exp = X.sum(axis=1) * last_node.input_weights[0] + last_node.bias
     self.assertEqual(exp.reshape((-1, 1)), got[:, -1:])
     rep = repr(net)
     self.assertEqual(rep, 'NeuralTreeNet(3)')
Beispiel #4
0
    def test_neural_net_gradient_regression_2(self):
        X = numpy.abs(numpy.random.randn(10, 2))
        w1 = numpy.array([-0.5, 0.8, -0.6])
        noise = numpy.random.randn(X.shape[0]) / 10
        noise[0] = 0
        noise[1] = 0.07
        X[1, 0] = 0.7
        X[1, 1] = -0.5
        y = w1[0] + X[:, 0] * w1[1] + X[:, 1] * w1[2] + noise

        for act in [
                'relu', 'sigmoid', 'identity', 'leakyrelu', 'sigmoid4', 'expit'
        ]:

            with self.subTest(act=act):
                neu = NeuralTreeNode(w1[1:], bias=w1[0], activation=act)
                loss1 = neu.loss(X, y)
                pred1 = neu.predict(X)
                if act == 'relu':
                    self.assertEqualArray(pred1[1:2], numpy.array([0.36]))
                    pred11 = neu.predict(X)
                    self.assertEqualArray(pred11[1:2], numpy.array([0.36]))

                net = NeuralTreeNet(X.shape[1], empty=True)
                net.append(neu, numpy.arange(0, 2))
                ide = NeuralTreeNode(numpy.array([1], dtype=X.dtype),
                                     bias=numpy.array([0], dtype=X.dtype),
                                     activation='identity')
                net.append(ide, numpy.arange(2, 3))
                pred2 = net.predict(X)
                loss2 = net.loss(X, y)

                self.assertEqualArray(pred1, pred2[:, -1])
                self.assertEqualArray(pred2[:, -2], pred2[:, -1])
                self.assertEqualArray(pred2[:, 2], pred2[:, 3])
                self.assertEqualArray(loss1, loss2)

                for p in range(0, 5):
                    grad1 = neu.gradient(X[p], y[p])
                    grad2 = net.gradient(X[p], y[p])
                    self.assertEqualArray(grad1, grad2[:3])
    def test_neural_net_gradient_regression(self):
        X = numpy.abs(numpy.random.randn(10, 2))
        w1 = numpy.array([-0.5, 0.8, -0.6])
        noise = numpy.random.randn(X.shape[0]) / 10
        noise[0] = 0
        noise[1] = 0.07
        X[1, 0] = 0.7
        X[1, 1] = -0.5
        y = w1[0] + X[:, 0] * w1[1] + X[:, 1] * w1[2] + noise

        for act in ['identity', 'relu', 'leakyrelu',
                    'sigmoid', 'sigmoid4', 'expit']:
            with self.subTest(act=act):
                neu = NeuralTreeNode(w1[1:], bias=w1[0], activation=act)
                loss1 = neu.loss(X, y)
                grad1 = neu.gradient(X[0], y[0])

                net = NeuralTreeNet(X.shape[1], empty=True)
                net.append(neu, numpy.arange(0, 2))
                loss2 = net.loss(X, y)
                grad2 = net.gradient(X[0], y[0])
                self.assertEqualArray(loss1, loss2)
                self.assertEqualArray(grad1, grad2)