Beispiel #1
0
def main():
    obs = srk.Observation( np.loadtxt("data.txt") )
    data_category = np.loadtxt( "category.txt" )

    vae1 = vae_model( 18, epoch=200, batch_size=500 )
    gmm1 = gmm.GMM( 10, category=data_category )
    mm1 = mm.MarkovModel()

    vae1.connect( obs )
    gmm1.connect( vae1 )
    mm1.connect( gmm1 )
    
    for i in range(5):
        print( i )
        vae1.update()
        gmm1.update()
        mm1.update()
Beispiel #2
0
def main():
    obs = srk.Observation(np.loadtxt("data.txt"))
    correct_classes = np.loadtxt("correct.txt")

    # GMM単体
    g = gmm.GMM(4, category=correct_classes)
    g.connect(obs)
    g.update()

    # GMMとマルコフモデルを結合したモデル
    g = gmm.GMM(4, category=correct_classes)
    m = mm.MarkovModel()

    g.connect(obs)
    m.connect(g)

    for itr in range(5):
        g.update()
        m.update()
Beispiel #3
0
def main():
    obs1 = srk.Observation(np.loadtxt("data1.txt"))
    obs2 = srk.Observation(np.loadtxt("data2.txt"))
    data_category = np.loadtxt("category.txt")

    vae1 = vae_model(18, epoch=200, batch_size=500)
    gmm1 = gmm.GMM(10, category=data_category)
    mlda1 = mlda.MLDA(10, [200, 200], category=data_category)
    mm1 = mm.MarkovModel()

    vae1.connect(obs1)
    gmm1.connect(vae1)
    mlda1.connect(obs2, gmm1)
    mm1.connect(mlda1)

    for i in range(5):
        print(i)
        vae1.update()
        gmm1.update()
        mlda1.update()
        mm1.update()