Beispiel #1
0
def main():
    args = parse_args()

    cfg = Config.fromfile(args.config)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.model.backbone.pretrained = None
    cfg.data.test.test_mode = True

    # build the dataloader
    dataset = build_dataset(cfg.data.test, dict(test_mode=True))
    data_loader = build_dataloader(
        dataset,
        videos_per_gpu=1,
        workers_per_gpu=cfg.data.workers_per_gpu,
        dist=False,
        shuffle=False)

    # build the model and load checkpoint
    model = build_model(
        cfg.model, train_cfg=None, test_cfg=cfg.get('test_cfg'))
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    if args.fuse_conv_bn:
        model = fuse_conv_bn(model)

    model = MMDataParallel(model, device_ids=[0])

    model.eval()

    # the first several iterations may be very slow so skip them
    num_warmup = 5
    pure_inf_time = 0

    # benchmark with 2000 video and take the average
    for i, data in enumerate(data_loader):

        torch.cuda.synchronize()
        start_time = time.perf_counter()

        with torch.no_grad():
            model(return_loss=False, **data)

        torch.cuda.synchronize()
        elapsed = time.perf_counter() - start_time

        if i >= num_warmup:
            pure_inf_time += elapsed
            if (i + 1) % args.log_interval == 0:
                fps = (i + 1 - num_warmup) / pure_inf_time
                print(
                    f'Done video [{i + 1:<3}/ 2000], fps: {fps:.1f} video / s')

        if (i + 1) == 200:
            pure_inf_time += elapsed
            fps = (i + 1 - num_warmup) / pure_inf_time
            print(f'Overall fps: {fps:.1f} video / s')
            break
Beispiel #2
0
def inference_pytorch(args, cfg, distributed, data_loader):
    """Get predictions by pytorch models."""
    # remove redundant pretrain steps for testing
    turn_off_pretrained(cfg.model)

    # build the model and load checkpoint
    model = build_model(cfg.model,
                        train_cfg=None,
                        test_cfg=cfg.get('test_cfg'))

    if len(cfg.module_hooks) > 0:
        register_module_hooks(model, cfg.module_hooks)

    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    load_checkpoint(model, args.checkpoint, map_location='cpu')

    if args.fuse_conv_bn:
        model = fuse_conv_bn(model)

    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        outputs = single_gpu_test(model, data_loader)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        outputs = multi_gpu_test(model, data_loader, args.tmpdir,
                                 args.gpu_collect)

    return outputs
Beispiel #3
0
def create_model(config):
    if isinstance(config, str):
        config = Config.fromfile(config)
        config = config.model
    elif isinstance(config, dict):
        pass
    model = build_model(config)

    return model
Beispiel #4
0
    def __init__(self, net_configs, is_head_included=True):
        super(BaseClassificationNet, self).__init__()

        self.net_configs = net_configs
        # 1 build the model based on the configurations
        self._net = build_model(net_configs)

        self.is_head_included = is_head_included

        # the features must be forwarded the avg pool
        self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
def build_model_by_config(config, ckpt_path=None):
    if isinstance(config, str):
        cfg = Config.fromfile(config)
        cfg.model.backbone.pretrained = None
    elif isinstance(config, dict):
        cfg = config
    model = build_model(cfg.model,
                        train_cfg=None,
                        test_cfg=cfg.get('test_cfg'))
    if ckpt_path is not None:
        load_checkpoint(model, ckpt_path, map_location='cpu')
    model.eval()
    return model
Beispiel #6
0
    def setup(self):
        print("loading dataset ...");
        self.system_dict["local"]["datasets"] = [build_dataset(self.system_dict["local"]["cfg"].data.train)]

        print("loading_model ...");
        self.system_dict["local"]["model"] = build_model(self.system_dict["local"]["cfg"].model, 
                            train_cfg=self.system_dict["local"]["cfg"].train_cfg, 
                            test_cfg=self.system_dict["local"]["cfg"].test_cfg)

        print("creating workspace directory ...");
        mmcv.mkdir_or_exist(osp.abspath(self.system_dict["local"]["cfg"].work_dir))
        
        print("Done");
Beispiel #7
0
def skeleton_based_action_recognition(args, pose_results, num_frame, h, w):
    fake_anno = dict(frame_dict='',
                     label=-1,
                     img_shape=(h, w),
                     origin_shape=(h, w),
                     start_index=0,
                     modality='Pose',
                     total_frames=num_frame)
    num_person = max([len(x) for x in pose_results])

    num_keypoint = 17
    keypoint = np.zeros((num_person, num_frame, num_keypoint, 2),
                        dtype=np.float16)
    keypoint_score = np.zeros((num_person, num_frame, num_keypoint),
                              dtype=np.float16)
    for i, poses in enumerate(pose_results):
        for j, pose in enumerate(poses):
            pose = pose['keypoints']
            keypoint[j, i] = pose[:, :2]
            keypoint_score[j, i] = pose[:, 2]

    fake_anno['keypoint'] = keypoint
    fake_anno['keypoint_score'] = keypoint_score

    label_map = [x.strip() for x in open(args.label_map).readlines()]
    num_class = len(label_map)

    skeleton_config = mmcv.Config.fromfile(args.skeleton_config)
    skeleton_config.model.cls_head.num_classes = num_class  # for K400 dataset
    skeleton_pipeline = Compose(skeleton_config.test_pipeline)
    skeleton_imgs = skeleton_pipeline(fake_anno)['imgs'][None]
    skeleton_imgs = skeleton_imgs.to(args.device)

    # Build skeleton-based recognition model
    skeleton_model = build_model(skeleton_config.model)
    load_checkpoint(skeleton_model,
                    args.skeleton_checkpoint,
                    map_location='cpu')
    skeleton_model.to(args.device)
    skeleton_model.eval()

    with torch.no_grad():
        output = skeleton_model(return_loss=False, imgs=skeleton_imgs)

    action_idx = np.argmax(output)
    skeleton_action_result = label_map[
        action_idx]  # skeleton-based action result for the whole video
    return skeleton_action_result
Beispiel #8
0
def inference_mmaction2(inputs, config, checkpoint):
    import torch
    from mmaction.models import build_model
    from mmcv import Config
    from mmcv.runner import load_checkpoint

    cfg = Config.fromfile(config)
    cfg.model.backbone.pretrained = None
    model = build_model(cfg.model,
                        train_cfg=None,
                        test_cfg=cfg.get('test_cfg'))
    load_checkpoint(model, checkpoint, map_location='cpu')
    model.eval()
    inputs = torch.tensor(inputs)
    with torch.no_grad():
        return model(return_loss=False, imgs=inputs)
def test_rgb_build():
    """ Test the code for building the rgb model"""

    # define the test data

    rgb_input_shape = (1, 3, 3, 8, 32, 32)
    rgb_demo_inputs = test_models.base.generate_recognizer_demo_inputs(
        rgb_input_shape, model_type='3D')

    rbg_model = build_model(Config.multimodal_nets_configs["rgb_model"])

    rgb_imgs = rgb_demo_inputs['imgs']
    # flow_imgs = flow_demo_inputs['imgs']
    # audio_feas = flow_demo_inputs['imgs']
    gt_labels = rgb_demo_inputs['gt_labels']

    print("rgb_imgs: ", rgb_imgs.shape)
    # print("flow_imgs: ", flow_imgs.shape)
    # print("audio_feas: ", audio_feas.shape)
    print("gt_labels: ", gt_labels.shape)

    losses = rbg_model(rgb_imgs, gt_labels)
    print("the rgb losses: ", losses)
Beispiel #10
0
def main():
    args = parse_args()

    frame_paths, original_frames = frame_extraction(args.video,
                                                    args.short_side)
    num_frame = len(frame_paths)
    h, w, _ = original_frames[0].shape

    # Get clip_len, frame_interval and calculate center index of each clip
    config = mmcv.Config.fromfile(args.config)
    config.merge_from_dict(args.cfg_options)

    test_pipeline = Compose(config.data.test.pipeline)

    # Load label_map
    label_map = [x.strip() for x in open(args.label_map).readlines()]

    # Get Human detection results
    det_results = detection_inference(args, frame_paths)
    torch.cuda.empty_cache()

    pose_results = pose_inference(args, frame_paths, det_results)
    torch.cuda.empty_cache()

    fake_anno = dict(frame_dir='',
                     label=-1,
                     img_shape=(h, w),
                     original_shape=(h, w),
                     start_index=0,
                     modality='Pose',
                     total_frames=num_frame)
    num_person = max([len(x) for x in pose_results])
    # Current PoseC3D models are trained on COCO-keypoints (17 keypoints)
    num_keypoint = 17
    keypoint = np.zeros((num_person, num_frame, num_keypoint, 2),
                        dtype=np.float16)
    keypoint_score = np.zeros((num_person, num_frame, num_keypoint),
                              dtype=np.float16)
    for i, poses in enumerate(pose_results):
        for j, pose in enumerate(poses):
            pose = pose['keypoints']
            keypoint[j, i] = pose[:, :2]
            keypoint_score[j, i] = pose[:, 2]
    fake_anno['keypoint'] = keypoint
    fake_anno['keypoint_score'] = keypoint_score

    imgs = test_pipeline(fake_anno)['imgs'][None]
    imgs = imgs.to(args.device)

    model = build_model(config.model)
    load_checkpoint(model, args.checkpoint, map_location=args.device)
    model.to(args.device)
    model.eval()

    with torch.no_grad():
        output = model(return_loss=False, imgs=imgs)

    action_idx = np.argmax(output)
    action_label = label_map[action_idx]

    pose_model = init_pose_model(args.pose_config, args.pose_checkpoint,
                                 args.device)
    vis_frames = [
        vis_pose_result(pose_model, frame_paths[i], pose_results[i])
        for i in range(num_frame)
    ]
    for frame in vis_frames:
        cv2.putText(frame, action_label, (10, 30), FONTFACE, FONTSCALE,
                    FONTCOLOR, THICKNESS, LINETYPE)

    cv2.imwrite('frame.jpg', vis_frames[0])
    vid = mpy.ImageSequenceClip([x[:, :, ::-1] for x in vis_frames], fps=24)
    vid.write_videofile(args.out_filename, remove_temp=True)

    tmp_frame_dir = osp.dirname(frame_paths[0])
    shutil.rmtree(tmp_frame_dir)
    return args


if __name__ == '__main__':
    args = parse_args()

    assert args.opset_version == 11, 'MMAction2 only supports opset 11 now'

    cfg = mmcv.Config.fromfile(args.config)
    # import modules from string list.

    if not args.is_localizer:
        cfg.model.backbone.pretrained = None

    # build the model
    model = build_model(
        cfg.model, train_cfg=None, test_cfg=cfg.get('test_cfg'))
    model = _convert_batchnorm(model)

    # onnx.export does not support kwargs
    if hasattr(model, 'forward_dummy'):
        model.forward = model.forward_dummy
    elif hasattr(model, '_forward') and args.is_localizer:
        model.forward = model._forward
    else:
        raise NotImplementedError(
            'Please implement the forward method for exporting.')

    checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')

    # conver model to onnx file
    pytorch2onnx(
Beispiel #12
0
                        nargs='+',
                        default=None,
                        help='Input dimension, mandatory for localizers')
    args = parser.parse_args()
    args.input_size = tuple(args.input_size) if args.input_size else None
    return args


if __name__ == '__main__':
    args = parse_args()
    config_path = args.config
    checkpoint_path = args.checkpoint

    model_cfg, test_pipeline, test_cfg = _get_cfg(config_path)

    model = build_model(model_cfg, train_cfg=None, test_cfg=test_cfg).cuda()
    if not args.is_localizer:
        try:
            dummy_input = torch.randn(args.input_size).cuda()
        except TypeError:
            for trans in test_pipeline:
                if trans['type'] == 'SampleFrames':
                    t = trans['clip_len']
                    n = trans['num_clips']
                elif trans['type'] == 'Resize':
                    if isinstance(trans['scale'], int):
                        s = trans['scale']
                    elif isinstance(trans['scale'], tuple):
                        s = max(trans['scale'])
            # #crop x (#batch * #clip) x #channel x clip_len x height x width
            dummy_input = torch.randn(1, 1 * n, 3, t, s, s).cuda()
def get_model_cls_3d(name, num_classes=1, num_classes_aux=0, pretrained=True):
    """
    Loads a pretrained model.
    Supports  resnet18, resnet34, resnet50, i3d, slowfast & slowonly.
    Strides are modified to be adapted to the small input size.

    Args:
        name (str): Model name
        num_classes (int, optional): Number of classes. Defaults to 1.
        num_classes_aux (int, optional): Number of aux classes. Defaults to 0.
        pretrained (bool, optional): Whether to load pretrained weights. Defaults to True.

    Raises:
        NotImplementedError: Specified model name is not supported.

    Returns:
        torch model -- Pretrained model.
    """

    # Load pretrained model
    if "resnet" in name:
        n_classes = 1139 if "KMS" in CP_PATHS[name] else 1039
        depth = int(name[-2:])
        model = generate_model(depth, n_classes=n_classes)

        if pretrained:
            load_model_weights_3d(model, CP_PATHS[name])
    elif name == "i3d":  # i3d
        model = InceptionI3d(num_classes=400, in_channels=3)

        if pretrained:
            load_model_weights(model, CP_PATHS[name])

    elif name in ["slowfast", "slowonly"]:
        model = build_model(CONFIGS[name])

        if pretrained:
            print(f'\n -> Loading weighs from "{CP_PATHS[name]}"\n')
            load_checkpoint(model, CP_PATHS[name])
    else:
        raise NotImplementedError

    model.name = name
    model.num_classes = num_classes
    model.num_classes_aux = num_classes_aux

    if "resnet" in name:
        # Strides
        model.conv1.stride = (1, 1, 1)
        model.layer2[0].conv1.stride = (1, 2, 2)
        model.layer2[0].downsample[0].stride = (1, 2, 2)
        model.layer3[0].conv1.stride = (1, 2, 2)
        model.layer3[0].downsample[0].stride = (1, 2, 2)
        model.layer4[0].conv1.stride = (1, 2, 2)
        model.layer4[0].downsample[0].stride = (1, 2, 2)
        model.maxpool.stride = (1, 2, 2)

        model.nb_ft = model.fc.in_features
        model.fc = nn.Linear(model.nb_ft, num_classes)
        model.forward = lambda x: forward_with_aux_resnet_3d(model, x)

        if num_classes_aux:
            model.fc_aux = nn.Linear(model.nb_ft, num_classes_aux)

    elif name == "i3d":
        model.Conv3d_1a_7x7.conv3d.stride = (1, 1, 1)
        # model.MaxPool3d_2a_3x3.stride = (1, 1, 1)
        model.MaxPool3d_4a_3x3.stride = (1, 2, 2)
        model.MaxPool3d_5a_2x2.stride = (1, 2, 2)

        model.nb_ft = model.logits.conv3d.in_channels
        model.logits = nn.Linear(model.nb_ft, num_classes)

        if num_classes_aux:
            model.fc_aux = nn.Linear(model.nb_ft, num_classes_aux)

    elif name == "slowfast":
        model.backbone.slow_path.conv1.stride = (1, 1, 1)
        model.backbone.fast_path.conv1.stride = (1, 1, 1)

        model.backbone.slow_path.maxpool.stride = (1, 1, 1)
        model.backbone.fast_path.maxpool.stride = (1, 1, 1)

        model.backbone.slow_path.pool2.stride = (1, 1, 1)
        model.backbone.fast_path.pool2.stride = (1, 1, 1)

        model.dropout = nn.Dropout(0.5)
        model.avg_pool = nn.AdaptiveAvgPool3d((1, 1, 1))

        model.nb_ft = model.cls_head.fc_cls.in_features

        model.fc = nn.Linear(model.nb_ft, num_classes)
        model.forward = lambda x: forward_slowfast(model, x)

        if num_classes_aux:
            model.fc_aux = nn.Linear(model.nb_ft, num_classes_aux)

    else:
        model.backbone.conv1.stride = (1, 1, 1)
        model.backbone.pool2.stride = (1, 1, 1)
        model.backbone.maxpool.stride = (1, 1, 1)

        model.dropout = nn.Dropout(0.5)
        model.avg_pool = nn.AdaptiveAvgPool3d((1, 1, 1))

        model.nb_ft = model.cls_head.fc_cls.in_features

        model.fc = nn.Linear(model.nb_ft, num_classes)
        model.forward = lambda x: forward_slowonly(model, x)

        if num_classes_aux:
            model.fc_aux = nn.Linear(model.nb_ft, num_classes_aux)

    return model
Beispiel #14
0
def main():
    # parse arguments
    args = parse_args()

    # load config
    cfg = Config.fromfile(args.config)
    if args.update_config is not None:
        cfg.merge_from_dict(args.update_config)
    cfg = update_config(cfg, args)
    cfg = propagate_root_dir(cfg, args.data_dir)

    # init distributed env first, since logger depends on the dist info.
    distributed = args.launcher != 'none'
    if distributed:
        init_dist(args.launcher, **cfg.dist_params)

    # create work_dir
    mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))

    # init logger before other steps
    timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
    log_file = osp.join(cfg.work_dir, f'{timestamp}.log')
    logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)

    # init the meta dict to record some important information such as
    # environment info and seed, which will be logged
    meta = dict()

    # log env info
    env_info_dict = collect_env()
    env_info = '\n'.join([f'{k}: {v}' for k, v in env_info_dict.items()])
    dash_line = '-' * 60 + '\n'
    logger.info('Environment info:\n' + dash_line + env_info + '\n' + dash_line)
    meta['env_info'] = env_info

    # log some basic info
    logger.info(f'Distributed training: {distributed}')
    logger.info(f'Config: {cfg.text}')

    if cfg.get('nncf_config'):
        check_nncf_is_enabled()
        logger.info('NNCF config: {}'.format(cfg.nncf_config))
        meta.update(get_nncf_metadata())

    # set random seeds
    cfg.seed = args.seed
    meta['seed'] = args.seed
    if cfg.get('seed'):
        logger.info(f'Set random seed to {cfg.seed}, deterministic: {args.deterministic}')
        set_random_seed(cfg.seed, deterministic=args.deterministic)

    # build datasets
    datasets = [build_dataset(cfg.data, 'train', dict(logger=logger))]
    logger.info(f'Train datasets:\n{str(datasets[0])}')

    if len(cfg.workflow) == 2:
        if not args.no_validate:
            warnings.warn('val workflow is duplicated with `--validate`, '
                          'it is recommended to use `--validate`. see '
                          'https://github.com/open-mmlab/mmaction2/pull/123')
        datasets.append(build_dataset(copy.deepcopy(cfg.data), 'val', dict(logger=logger)))
        logger.info(f'Val datasets:\n{str(datasets[-1])}')

    # filter dataset labels
    if cfg.get('classes'):
        datasets = [dataset.filter(cfg.classes) for dataset in datasets]

    # build model
    model = build_model(
        cfg.model,
        train_cfg=cfg.train_cfg,
        test_cfg=cfg.test_cfg,
        class_sizes=datasets[0].class_sizes,
        class_maps=datasets[0].class_maps
    )

    # define ignore layers
    ignore_prefixes = []
    if hasattr(cfg, 'reset_layer_prefixes') and isinstance(cfg.reset_layer_prefixes, (list, tuple)):
        ignore_prefixes += cfg.reset_layer_prefixes
    ignore_suffixes = ['num_batches_tracked']
    if hasattr(cfg, 'reset_layer_suffixes') and isinstance(cfg.reset_layer_suffixes, (list, tuple)):
        ignore_suffixes += cfg.reset_layer_suffixes

    # train model
    train_model(
        model,
        datasets,
        cfg,
        distributed=distributed,
        validate=(not args.no_validate),
        timestamp=timestamp,
        meta=meta,
        ignore_prefixes=tuple(ignore_prefixes),
        ignore_suffixes=tuple(ignore_suffixes)
    )
Beispiel #15
0
def main():
    args = parse_args()
    args.is_rgb = args.modality == 'RGB'
    args.clip_len = 1 if args.is_rgb else 5
    args.input_format = 'NCHW' if args.is_rgb else 'NCHW_Flow'
    rgb_norm_cfg = dict(mean=[123.675, 116.28, 103.53],
                        std=[58.395, 57.12, 57.375],
                        to_bgr=False)
    flow_norm_cfg = dict(mean=[128, 128], std=[128, 128])
    args.img_norm_cfg = rgb_norm_cfg if args.is_rgb else flow_norm_cfg
    args.f_tmpl = 'img_{:05d}.jpg' if args.is_rgb else 'flow_{}_{:05d}.jpg'
    args.in_channels = args.clip_len * (3 if args.is_rgb else 2)
    # max batch_size for one forward
    args.batch_size = 200

    # define the data pipeline for Untrimmed Videos
    data_pipeline = [
        dict(type='UntrimmedSampleFrames',
             clip_len=args.clip_len,
             frame_interval=args.frame_interval,
             start_index=0),
        dict(type='FrameSelector'),
        dict(type='Resize', scale=(-1, 256)),
        dict(type='CenterCrop', crop_size=256),
        dict(type='Normalize', **args.img_norm_cfg),
        dict(type='FormatShape', input_format=args.input_format),
        dict(type='Collect', keys=['imgs'], meta_keys=[]),
        dict(type='ToTensor', keys=['imgs'])
    ]
    data_pipeline = Compose(data_pipeline)
    #pdb.set_trace()
    # define TSN R50 model, the model is used as the feature extractor
    model_cfg = dict(type='Recognizer2D',
                     backbone=dict(type='ResNet',
                                   depth=50,
                                   in_channels=args.in_channels,
                                   norm_eval=False),
                     cls_head=dict(type='TSNHead',
                                   num_classes=400,
                                   in_channels=2048,
                                   spatial_type='avg',
                                   consensus=dict(type='AvgConsensus', dim=1)),
                     test_cfg=dict(average_clips=None))
    model = build_model(model_cfg)
    # load pretrained weight into the feature extractor
    state_dict = torch.load(args.ckpt)['state_dict']
    #pdb.set_trace()
    model.load_state_dict(state_dict)
    model = model.cuda()
    model.eval()

    data = open(args.data_list).readlines()
    data = [x.strip() for x in data]
    data = data[args.part::args.total]

    # enumerate Untrimmed videos, extract feature from each of them
    prog_bar = mmcv.ProgressBar(len(data))
    if not osp.exists(args.output_prefix):
        os.system(f'mkdir -p {args.output_prefix}')

    for item in data:
        frame_dir, length, label = item.split()
        output_file = osp.basename(frame_dir) + '.pkl'
        frame_dir = osp.join(args.data_prefix, frame_dir)
        output_file = osp.join(args.output_prefix, output_file)
        assert output_file.endswith('.pkl')
        length = int(length)

        # prepare a psuedo sample
        tmpl = dict(frame_dir=frame_dir,
                    total_frames=length,
                    filename_tmpl=args.f_tmpl,
                    start_index=0,
                    modality=args.modality)
        sample = data_pipeline(tmpl)
        imgs = sample['imgs']
        shape = imgs.shape
        # the original shape should be N_seg * C * H * W, resize it to N_seg *
        # 1 * C * H * W so that the network return feature of each frame (No
        # score average among segments)
        imgs = imgs.reshape((shape[0], 1) + shape[1:])
        imgs = imgs.cuda()

        def forward_data(model, data):
            # chop large data into pieces and extract feature from them
            results = []
            start_idx = 0
            num_clip = data.shape[0]
            while start_idx < num_clip:
                with torch.no_grad():
                    part = data[start_idx:start_idx + args.batch_size]
                    feat = model.forward(part, return_loss=False)
                    results.append(feat)
                    start_idx += args.batch_size
            return np.concatenate(results)

        feat = forward_data(model, imgs)
        #pdb.set_trace()
        with open(output_file, 'wb') as fout:
            pickle.dump(feat, fout)
        prog_bar.update()
Beispiel #16
0
def main():
    args = parse_args()

    cfg = Config.fromfile(args.config)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True

    # work_dir is determined in this priority:
    # CLI > config file > default (base filename)
    if args.work_dir is not None:
        # update configs according to CLI args if args.work_dir is not None
        cfg.work_dir = args.work_dir
    elif cfg.get('work_dir', None) is None:
        # use config filename as default work_dir if cfg.work_dir is None
        cfg.work_dir = osp.join('./work_dirs',
                                osp.splitext(osp.basename(args.config))[0])
    if args.resume_from is not None:
        cfg.resume_from = args.resume_from
    if args.gpu_ids is not None:
        cfg.gpu_ids = args.gpu_ids
    else:
        cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus)

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # create work_dir
    mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
    # dump config
    cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config)))
    # init logger before other steps
    timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
    log_file = osp.join(cfg.work_dir, f'{timestamp}.log')
    logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)

    # init the meta dict to record some important information such as
    # environment info and seed, which will be logged
    meta = dict()
    # log env info
    env_info_dict = collect_env()
    env_info = '\n'.join([f'{k}: {v}' for k, v in env_info_dict.items()])
    dash_line = '-' * 60 + '\n'
    logger.info('Environment info:\n' + dash_line + env_info + '\n' +
                dash_line)
    meta['env_info'] = env_info

    # log some basic info
    logger.info(f'Distributed training: {distributed}')
    logger.info(f'Config: {cfg.text}')

    # set random seeds
    if args.seed is not None:
        logger.info('Set random seed to {}, deterministic: {}'.format(
            args.seed, args.deterministic))
        set_random_seed(args.seed, deterministic=args.deterministic)
    cfg.seed = args.seed
    meta['seed'] = args.seed

    model = build_model(cfg.model,
                        train_cfg=cfg.train_cfg,
                        test_cfg=cfg.test_cfg)

    datasets = [build_dataset(cfg.data.train)]
    if len(cfg.workflow) == 2:
        val_dataset = copy.deepcopy(cfg.data.val)
        datasets.append(build_dataset(val_dataset))
    if cfg.checkpoint_config is not None:
        # save mmaction version, config file content and class names in
        # checkpoints as meta data
        cfg.checkpoint_config.meta = dict(mmaction_version=__version__,
                                          config=cfg.text)

    train_model(model,
                datasets,
                cfg,
                distributed=distributed,
                validate=args.validate,
                timestamp=timestamp,
                meta=meta)
Beispiel #17
0
def main():
    parser = ArgumentParser()
    parser.add_argument('--config', '-c', type=str, required=True)
    parser.add_argument('--checkpoint', '-w', type=str, required=True)
    parser.add_argument('--dataset_name', '-n', type=str, required=True)
    parser.add_argument('--data_dir', '-d', type=str, required=True)
    parser.add_argument('--predictions', '-p', type=str, required=True)
    parser.add_argument('--movements', '-m', type=str, required=True)
    parser.add_argument('--keypoints', '-k', type=str, required=True)
    parser.add_argument('--out_annotation', '-o', type=str, required=True)
    args = parser.parse_args()

    assert exists(args.config)
    assert exists(args.weights)
    assert exists(args.data_dir)
    assert exists(args.predictions)
    assert exists(args.movements)
    assert exists(args.keypoints)
    assert args.dataset_name is not None and args.dataset_name != ''
    assert args.out_annotation is not None and args.out_annotation != ''

    cfg = Config.fromfile(args.config)
    cfg = update_config(cfg, args, trg_name=args.dataset_name)
    cfg = propagate_root_dir(cfg, args.data_dir)

    dataset = build_dataset(cfg.data, 'train', dict(test_mode=True))
    data_pipeline = Compose(dataset.pipeline.transforms[1:])
    print('{} dataset:\n'.format(args.mode) + str(dataset))

    model = build_model(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
    load_checkpoint(model, args.checkpoint, strict=False)
    model = MMDataParallel(model, device_ids=[0])
    model.eval()

    annotation_path = join(args.data_dir, cfg.data.train.sources[0],
                           cfg.data.train.ann_file)
    records = load_annotation(annotation_path)
    predictions = load_distributed_data(args.predictions,
                                        parse_predictions_file, 'txt')
    movements = load_distributed_data(args.movements, parse_movements_file,
                                      'txt')
    hand_kpts = load_distributed_data(args.keypoints, parse_kpts_file, 'json')
    print('Loaded records: {}'.format(len(records)))

    invalid_stat = dict()
    all_candidates = []

    ignore_candidates = get_ignore_candidates(records, IGNORE_LABELS)
    all_candidates += ignore_candidates

    static_candidates, static_invalids = get_regular_candidates(
        records,
        predictions,
        movements,
        hand_kpts,
        cfg.data.output.length,
        False,
        STATIC_LABELS,
        NEGATIVE_LABEL,
        NO_MOTION_LABEL,
        min_score=0.9,
        min_length=4,
        max_distance=1)
    all_candidates += static_candidates
    invalid_stat = update_stat(invalid_stat, static_invalids)
    print('Static candidates: {}'.format(len(static_candidates)))

    if len(invalid_stat) > 0:
        print('Ignored records after static analysis:')
        for ignore_label, ignore_values in invalid_stat.items():
            print('   - {}: {}'.format(ignore_label.replace('_', ' '),
                                       len(ignore_values)))

    dynamic_candidates, dynamic_invalids = get_regular_candidates(
        records,
        predictions,
        movements,
        hand_kpts,
        cfg.data.output.length,
        True,
        DYNAMIC_LABELS,
        NEGATIVE_LABEL,
        NO_MOTION_LABEL,
        min_score=0.9,
        min_length=4,
        max_distance=1)
    all_candidates += dynamic_candidates
    invalid_stat = update_stat(invalid_stat, dynamic_invalids)
    print('Dynamic candidates: {}'.format(len(dynamic_candidates)))

    if len(invalid_stat) > 0:
        print('Ignored records after dynamic analysis:')
        for ignore_label, ignore_values in invalid_stat.items():
            print('   - {}: {}'.format(ignore_label.replace('_', ' '),
                                       len(ignore_values)))

    fixed_records, fix_stat = find_best_match(all_candidates, model, dataset,
                                              NEGATIVE_LABEL)
    invalid_stat = update_stat(invalid_stat, fix_stat)
    print('Final records: {}'.format(len(fixed_records)))

    if len(invalid_stat) > 0:
        print('Final ignored records:')
        for ignore_label, ignore_values in invalid_stat.items():
            print('   - {}: {}'.format(ignore_label.replace('_', ' '),
                                       len(ignore_values)))
            for ignored_record in ignore_values:
                print('      - {}'.format(ignored_record.path))

    dump_records(fixed_records, args.out_annotation)
    print('Fixed annotation has been stored at: {}'.format(
        args.out_annotation))
def main():
    args = parse_args()

    cfg = Config.fromfile(args.config)

    cfg.merge_from_dict(args.cfg_options)

    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True

    # work_dir is determined in this priority:
    # CLI > config file > default (base filename)
    if args.work_dir is not None:
        # update configs according to CLI args if args.work_dir is not None
        cfg.work_dir = args.work_dir
    elif cfg.get('work_dir', None) is None:
        # use config filename as default work_dir if cfg.work_dir is None
        cfg.work_dir = osp.join('./work_dirs',
                                osp.splitext(osp.basename(args.config))[0])
    if args.resume_from is not None:
        cfg.resume_from = args.resume_from
    if args.gpu_ids is not None:
        cfg.gpu_ids = args.gpu_ids
    else:
        cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus)

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # The flag is used to determine whether it is omnisource training
    cfg.setdefault('omnisource', False)

    # The flag is used to register module's hooks
    cfg.setdefault('module_hooks', [])

    # create work_dir
    mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
    # dump config
    cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config)))
    # init logger before other steps
    timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
    log_file = osp.join(cfg.work_dir, f'{timestamp}.log')
    logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)

    # init the meta dict to record some important information such as
    # environment info and seed, which will be logged
    meta = dict()
    # log env info
    env_info_dict = collect_env()
    env_info = '\n'.join([f'{k}: {v}' for k, v in env_info_dict.items()])
    dash_line = '-' * 60 + '\n'
    logger.info('Environment info:\n' + dash_line + env_info + '\n' +
                dash_line)
    meta['env_info'] = env_info

    # log some basic info
    logger.info(f'Distributed training: {distributed}')
    logger.info(f'Config: {cfg.text}')

    # set random seeds
    if args.seed is not None:
        logger.info(f'Set random seed to {args.seed}, '
                    f'deterministic: {args.deterministic}')
        set_random_seed(args.seed, deterministic=args.deterministic)
    cfg.seed = args.seed
    meta['seed'] = args.seed
    meta['config_name'] = osp.basename(args.config)
    meta['work_dir'] = osp.basename(cfg.work_dir.rstrip('/\\'))

    model = build_model(cfg.model,
                        train_cfg=cfg.get('train_cfg'),
                        test_cfg=cfg.get('test_cfg'))

    register_module_hooks(model.backbone, cfg.module_hooks)

    if cfg.omnisource:
        # If omnisource flag is set, cfg.data.train should be a list
        assert type(cfg.data.train) is list
        datasets = [build_dataset(dataset) for dataset in cfg.data.train]
    else:
        datasets = [build_dataset(cfg.data.train)]

    if len(cfg.workflow) == 2:
        # For simplicity, omnisource is not compatiable with val workflow,
        # we recommend you to use `--validate`
        assert not cfg.omnisource
        if args.validate:
            warnings.warn('val workflow is duplicated with `--validate`, '
                          'it is recommended to use `--validate`. see '
                          'https://github.com/open-mmlab/mmaction2/pull/123')
        val_dataset = copy.deepcopy(cfg.data.val)
        datasets.append(build_dataset(val_dataset))
    if cfg.checkpoint_config is not None:
        # save mmaction version, config file content and class names in
        # checkpoints as meta data
        cfg.checkpoint_config.meta = dict(mmaction_version=__version__ +
                                          get_git_hash(digits=7),
                                          config=cfg.text)

    train_model(model,
                datasets,
                cfg,
                distributed=distributed,
                validate=args.validate,
                timestamp=timestamp,
                meta=meta)
Beispiel #19
0
def main():
    parser = ArgumentParser()
    parser.add_argument('--config',
                        type=str,
                        required=True,
                        help='Test config file path')
    parser.add_argument('--checkpoint',
                        type=str,
                        required=True,
                        help='Checkpoint file')
    parser.add_argument('--data_dir',
                        type=str,
                        required=True,
                        help='The dir with dataset')
    parser.add_argument('--out_dir',
                        type=str,
                        required=True,
                        help='Output directory')
    parser.add_argument('--dataset',
                        type=str,
                        required=True,
                        help='Dataset name')
    parser.add_argument('--gpus',
                        default=1,
                        type=int,
                        help='GPU number used for annotating')
    parser.add_argument('--proc_per_gpu',
                        default=2,
                        type=int,
                        help='Number of processes per GPU')
    parser.add_argument('--mode',
                        choices=['train', 'val', 'test'],
                        default='train')
    args = parser.parse_args()

    assert exists(args.config)
    assert exists(args.checkpoint)
    assert exists(args.data_dir)

    cfg = Config.fromfile(args.config)
    cfg = update_config(cfg, args, trg_name=args.dataset)
    cfg = propagate_root_dir(cfg, args.data_dir)

    dataset = build_dataset(cfg.data, args.mode, dict(test_mode=True))
    data_pipeline = Compose(dataset.pipeline.transforms[1:])
    print('{} dataset:\n'.format(args.mode) + str(dataset))

    tasks = prepare_tasks(dataset, cfg.input_clip_length)
    print('Prepared tasks: {}'.format(sum([len(v) for v in tasks.values()])))

    if not exists(args.out_dir):
        makedirs(args.out_dir)

    model = build_model(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
    load_checkpoint(model, args.checkpoint, strict=False)

    batch_size = 4 * cfg.data.videos_per_gpu
    if args.gpus == 1:
        model = MMDataParallel(model, device_ids=[0])
        model.eval()

        process_tasks(tasks, dataset, model, args.out_dir, batch_size,
                      cfg.input_clip_length, data_pipeline)
    else:
        raise NotImplementedError
Beispiel #20
0
def main():
    args = parse_args()

    cfg = mmcv.Config.fromfile(args.config)

    # Load output_config from cfg
    output_config = cfg.get('output_config', {})
    # Overwrite output_config from args.out
    output_config = merge_configs(output_config, dict(out=args.out))

    # Load eval_config from cfg
    eval_config = cfg.get('eval_config', {})
    # Overwrite eval_config from args.eval
    eval_config = merge_configs(eval_config, dict(metrics=args.eval))
    # Add options from args.option
    eval_config = merge_configs(eval_config, args.options)

    assert output_config or eval_config, \
        ('Please specify at least one operation (save or eval the '
         'results) with the argument "--out" or "--eval"')

    # set cudnn benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.data.test.test_mode = True

    if cfg.test_cfg is None:
        cfg.test_cfg = dict(average_clips=args.average_clips)
    else:
        cfg.test_cfg.average_clips = args.average_clips

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # build the dataloader
    dataset = build_dataset(cfg.data.test, dict(test_mode=True))
    data_loader = build_dataloader(dataset,
                                   videos_per_gpu=1,
                                   workers_per_gpu=cfg.data.workers_per_gpu,
                                   dist=distributed,
                                   shuffle=False)

    # map lable from txt to csv file
    df = pd.read_csv('/data2/phap/datasets/dataset3_test.txt', header=None)
    df.columns = ['full_name']
    df['file_name'] = df['full_name'].apply(lambda x: x.rsplit(' ')[0])
    df['true_label'] = df['full_name'].apply(lambda x: x.rsplit(' ')[-1])

    # build the model and load checkpoint
    model = build_model(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
    load_checkpoint(model, args.checkpoint, map_location='cpu')

    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        outputs = single_gpu_test(model, data_loader)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        outputs = multi_gpu_test(model, data_loader, args.tmpdir,
                                 args.gpu_collect)

    # convert softmax output to one hot
    pred_arr = []
    for i in outputs:
        pred = np.argmax(i)
        pred_arr.append(pred)

    # import output into csv
    df['pred_label_orig'] = outputs
    df['pred_label'] = pred_arr

    # save csv file
    df.to_csv('dataset3_test_pred_w_rwf_model.csv')
    print('\nSuccess, csv file saved')

    rank, _ = get_dist_info()
    if rank == 0:
        if output_config:
            out = output_config['out']
            print(f'\nwriting results to {out}')
            dataset.dump_results(outputs, **output_config)
        if eval_config:
            eval_res = dataset.evaluate(outputs, **eval_config)
            for name, val in eval_res.items():
                print(f'{name}: {val:.04f}')
Beispiel #21
0
def main():
    args = parse_args()

    cfg = mmcv.Config.fromfile(args.config)
    if args.update_config is not None:
        cfg.merge_from_dict(args.update_config)
    cfg = update_config(cfg, args)
    cfg = propagate_root_dir(cfg, args.data_dir)

    # Load output_config from cfg
    output_config = cfg.get('output_config', {})
    # Overwrite output_config from args.out
    output_config = merge_configs(output_config, dict(out=args.out))

    # Load eval_config from cfg
    eval_config = cfg.get('eval_config', {})
    # Overwrite eval_config from args.eval
    eval_config = merge_configs(eval_config, dict(metrics=args.eval))
    # Add options from args.option
    eval_config = merge_configs(eval_config, args.options)

    assert output_config or eval_config, \
        ('Please specify at least one operation (save or eval the '
         'results) with the argument "--out" or "--eval"')

    # init distributed env first, since logger depends on the dist info.
    distributed = args.launcher != 'none'
    if distributed:
        init_dist(args.launcher, **cfg.dist_params)

    # get rank
    rank, _ = get_dist_info()

    if cfg.get('seed'):
        print(f'Set random seed to {cfg.seed}')
        set_random_seed(cfg.seed)

    # build the dataset
    dataset = build_dataset(cfg.data, 'test', dict(test_mode=True))
    if cfg.get('classes'):
        dataset = dataset.filter(cfg.classes)
    if rank == 0:
        print(f'Test datasets:\n{str(dataset)}')

    # build the dataloader
    data_loader = build_dataloader(dataset,
                                   videos_per_gpu=1,
                                   workers_per_gpu=cfg.data.workers_per_gpu,
                                   dist=distributed,
                                   shuffle=False)

    # build the model and load checkpoint
    model = build_model(cfg.model,
                        train_cfg=None,
                        test_cfg=cfg.test_cfg,
                        class_sizes=dataset.class_sizes,
                        class_maps=dataset.class_maps)

    # nncf model wrapper
    if is_checkpoint_nncf(args.checkpoint) and not cfg.get('nncf_config'):
        # reading NNCF config from checkpoint
        nncf_part = get_nncf_config_from_meta(args.checkpoint)
        for k, v in nncf_part.items():
            cfg[k] = v

    if cfg.get('nncf_config'):
        check_nncf_is_enabled()
        if not is_checkpoint_nncf(args.checkpoint):
            raise RuntimeError(
                'Trying to make testing with NNCF compression a model snapshot that was NOT trained with NNCF'
            )
        cfg.load_from = args.checkpoint
        cfg.resume_from = None
        if torch.cuda.is_available():
            model = model.cuda()
        _, model = wrap_nncf_model(model, cfg, None, get_fake_input)
    else:
        fp16_cfg = cfg.get('fp16', None)
        if fp16_cfg is not None:
            wrap_fp16_model(model)
        # load model weights
        load_checkpoint(model,
                        args.checkpoint,
                        map_location='cpu',
                        force_matching=True)
        if args.fuse_conv_bn:
            model = fuse_conv_bn(model)

    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        outputs = single_gpu_test(model, data_loader)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        outputs = multi_gpu_test(model, data_loader, args.tmpdir,
                                 args.gpu_collect)

    if rank == 0:
        if output_config:
            out = output_config['out']
            print(f'\nwriting results to {out}')
            dataset.dump_results(outputs, **output_config)

        if eval_config:
            eval_res = dataset.evaluate(outputs, **eval_config)

            print('\nFinal metrics:')
            for name, val in eval_res.items():
                if 'invalid_info' in name:
                    continue

                if isinstance(val, float):
                    print(f'{name}: {val:.04f}')
                elif isinstance(val, str):
                    print(f'{name}:\n{val}')
                else:
                    print(f'{name}: {val}')

            invalid_info = {
                name: val
                for name, val in eval_res.items() if 'invalid_info' in name
            }
            if len(invalid_info) > 0:
                assert args.out_invalid is not None and args.out_invalid != ''
                if os.path.exists(args.out_invalid):
                    shutil.rmtree(args.out_invalid)
                if not os.path.exists(args.out_invalid):
                    os.makedirs(args.out_invalid)

                for name, invalid_record in invalid_info.items():
                    out_invalid_dir = os.path.join(args.out_invalid, name)

                    item_gen = zip(invalid_record['ids'],
                                   invalid_record['conf'],
                                   invalid_record['pred'])
                    for invalid_idx, pred_conf, pred_label in item_gen:
                        record_info = dataset.get_info(invalid_idx)
                        gt_label = record_info['label']

                        if 'filename' in record_info:
                            src_data_path = record_info['filename']

                            in_record_name, record_extension = os.path.basename(
                                src_data_path).split('.')
                            out_record_name = f'{in_record_name}_gt{gt_label}_pred{pred_label}_conf{pred_conf:.3f}'
                            trg_data_path = os.path.join(
                                out_invalid_dir,
                                f'{out_record_name}.{record_extension}')

                            shutil.copyfile(src_data_path, trg_data_path)
                        else:
                            src_data_path = record_info['frame_dir']

                            in_record_name = os.path.basename(src_data_path)
                            out_record_name = f'{in_record_name}_gt{gt_label}_pred{pred_label}_conf{pred_conf:.3f}'
                            trg_data_path = os.path.join(
                                out_invalid_dir, out_record_name)
                            os.makedirs(trg_data_path)

                            start_frame_id = record_info[
                                'clip_start'] + dataset.start_index
                            end_frame_id = record_info[
                                'clip_end'] + dataset.start_index
                            for frame_id in range(start_frame_id,
                                                  end_frame_id):
                                img_name = f'{frame_id:05}.jpg'
                                shutil.copyfile(
                                    os.path.join(src_data_path, img_name),
                                    os.path.join(trg_data_path, img_name))
Beispiel #22
0
    return args


if __name__ == '__main__':
    args = parse_args()

    assert args.opset_version == 11, 'MMAction2 only supports opset 11 now'

    cfg = mmcv.Config.fromfile(args.config)
    # import modules from string list.

    if not args.is_localizer:
        cfg.model.backbone.pretrained = None

    # build the model
    model = build_model(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
    model = _convert_batchnorm(model)

    # onnx.export does not support kwargs
    if hasattr(model, 'forward_dummy'):
        model.forward = model.forward_dummy
    elif hasattr(model, '_forward') and args.is_localizer:
        model.forward = model._forward
    else:
        raise NotImplementedError(
            'Please implement the forward method for exporting.')

    checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')

    # conver model to onnx file
    pytorch2onnx(
Beispiel #23
0
def main():
    args = parse_args()

    cfg = Config.fromfile(args.config)

    cfg.merge_from_dict(args.cfg_options)

    # Load output_config from cfg
    output_config = cfg.get('output_config', {})
    # Overwrite output_config from args.out
    output_config = merge_configs(output_config, dict(out=args.out))

    # Load eval_config from cfg
    eval_config = cfg.get('eval_config', {})
    # Overwrite eval_config from args.eval
    eval_config = merge_configs(eval_config, dict(metrics=args.eval))
    # Add options from args.option
    eval_config = merge_configs(eval_config, args.options)

    assert output_config or eval_config, \
        ('Please specify at least one operation (save or eval the '
         'results) with the argument "--out" or "--eval"')

    # set cudnn benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.data.test.test_mode = True

    if cfg.test_cfg is None:
        cfg.test_cfg = dict(average_clips=args.average_clips)
    else:
        # You can set average_clips during testing, it will override the
        # original settting
        if args.average_clips is not None:
            cfg.test_cfg.average_clips = args.average_clips

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # create work_dir
    mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
    # build the dataloader
    dataset = build_dataset(cfg.data.test, dict(test_mode=True))
    dataloader_setting = dict(videos_per_gpu=cfg.data.get('videos_per_gpu', 2),
                              workers_per_gpu=cfg.data.get(
                                  'workers_per_gpu', 0),
                              dist=distributed,
                              shuffle=False)
    dataloader_setting = dict(dataloader_setting,
                              **cfg.data.get('test_dataloader', {}))
    data_loader = build_dataloader(dataset, **dataloader_setting)

    # build the model and load checkpoint
    model = build_model(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    load_checkpoint(model, args.checkpoint, map_location='cpu')

    if args.fuse_conv_bn:
        model = fuse_conv_bn(model)

    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        outputs = single_gpu_test(model, data_loader)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        outputs = multi_gpu_test(model, data_loader, args.tmpdir,
                                 args.gpu_collect)

    rank, _ = get_dist_info()
    if rank == 0:
        if output_config:
            out = output_config['out']
            print(f'\nwriting results to {out}')
            dataset.dump_results(outputs, **output_config)
        if eval_config:
            eval_res = dataset.evaluate(outputs, **eval_config)
            for name, val in eval_res.items():
                print(f'{name}: {val:.04f}')
Beispiel #24
0
def skeleton_based_stdet(args, label_map, human_detections, pose_results,
                         num_frame, clip_len, frame_interval, h, w):
    window_size = clip_len * frame_interval
    assert clip_len % 2 == 0, 'We would like to have an even clip_len'
    timestamps = np.arange(window_size // 2, num_frame + 1 - window_size // 2,
                           args.predict_stepsize)

    skeleton_config = mmcv.Config.fromfile(args.skeleton_config)
    num_class = max(label_map.keys()) + 1  # for AVA dataset (81)
    skeleton_config.model.cls_head.num_classes = num_class
    skeleton_pipeline = Compose(skeleton_config.test_pipeline)
    skeleton_stdet_model = build_model(skeleton_config.model)
    load_checkpoint(skeleton_stdet_model,
                    args.skeleton_stdet_checkpoint,
                    map_location='cpu')
    skeleton_stdet_model.to(args.device)
    skeleton_stdet_model.eval()

    skeleton_predictions = []

    print('Performing SpatioTemporal Action Detection for each clip')
    prog_bar = mmcv.ProgressBar(len(timestamps))
    for timestamp in timestamps:
        proposal = human_detections[timestamp - 1]
        if proposal.shape[0] == 0:  # no people detected
            skeleton_predictions.append(None)
            continue

        start_frame = timestamp - (clip_len // 2 - 1) * frame_interval
        frame_inds = start_frame + np.arange(0, window_size, frame_interval)
        frame_inds = list(frame_inds - 1)
        num_frame = len(frame_inds)  # 30

        pose_result = [pose_results[ind] for ind in frame_inds]

        skeleton_prediction = []
        for i in range(proposal.shape[0]):  # num_person
            skeleton_prediction.append([])

            fake_anno = dict(frame_dict='',
                             label=-1,
                             img_shape=(h, w),
                             origin_shape=(h, w),
                             start_index=0,
                             modality='Pose',
                             total_frames=num_frame)
            num_person = 1

            num_keypoint = 17
            keypoint = np.zeros(
                (num_person, num_frame, num_keypoint, 2))  # M T V 2
            keypoint_score = np.zeros(
                (num_person, num_frame, num_keypoint))  # M T V

            # pose matching
            person_bbox = proposal[i][:4]
            area = expand_bbox(person_bbox, h, w)

            for j, poses in enumerate(pose_result):  # num_frame
                max_iou = float('-inf')
                index = -1
                if len(poses) == 0:
                    continue
                for k, per_pose in enumerate(poses):
                    iou = cal_iou(per_pose['bbox'][:4], area)
                    if max_iou < iou:
                        index = k
                        max_iou = iou
                keypoint[0, j] = poses[index]['keypoints'][:, :2]
                keypoint_score[0, j] = poses[index]['keypoints'][:, 2]

            fake_anno['keypoint'] = keypoint
            fake_anno['keypoint_score'] = keypoint_score

            skeleton_imgs = skeleton_pipeline(fake_anno)['imgs'][None]
            skeleton_imgs = skeleton_imgs.to(args.device)

            with torch.no_grad():
                output = skeleton_stdet_model(return_loss=False,
                                              imgs=skeleton_imgs)
                output = output[0]
                for k in range(len(output)):  # 81
                    if k not in label_map:
                        continue
                    if output[k] > args.action_score_thr:
                        skeleton_prediction[i].append(
                            (label_map[k], output[k]))

        skeleton_predictions.append(skeleton_prediction)
        prog_bar.update()

    return timestamps, skeleton_predictions
Beispiel #25
0
def main():
    args = parse_args()

    cfg = Config.fromfile(args.config)

    cfg.merge_from_dict(args.cfg_options)

    # Load output_config from cfg
    output_config = cfg.get('output_config', {})
    if args.out:
        # Overwrite output_config from args.out
        output_config = Config._merge_a_into_b(dict(out=args.out),
                                               output_config)

    # Load eval_config from cfg
    eval_config = cfg.get('eval_config', {})
    if args.eval:
        # Overwrite eval_config from args.eval
        eval_config = Config._merge_a_into_b(dict(metrics=args.eval),
                                             eval_config)
    if args.eval_options:
        # Add options from args.eval_options
        eval_config = Config._merge_a_into_b(args.eval_options, eval_config)

    assert output_config or eval_config, \
        ('Please specify at least one operation (save or eval the '
         'results) with the argument "--out" or "--eval"')

    dataset_type = cfg.data.test.type
    if output_config.get('out', None):
        if 'output_format' in output_config:
            # ugly workround to make recognition and localization the same
            warnings.warn(
                'Skip checking `output_format` in localization task.')
        else:
            out = output_config['out']
            # make sure the dirname of the output path exists
            mmcv.mkdir_or_exist(osp.dirname(out))
            _, suffix = osp.splitext(out)
            if dataset_type == 'AVADataset':
                assert suffix[1:] == 'csv', ('For AVADataset, the format of '
                                             'the output file should be csv')
            else:
                assert suffix[1:] in file_handlers, (
                    'The format of the output '
                    'file should be json, pickle or yaml')

    # set cudnn benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.data.test.test_mode = True

    if args.average_clips is not None:
        # You can set average_clips during testing, it will override the
        # original setting
        if cfg.model.get('test_cfg') is None and cfg.get('test_cfg') is None:
            cfg.model.setdefault('test_cfg',
                                 dict(average_clips=args.average_clips))
        else:
            if cfg.model.get('test_cfg') is not None:
                cfg.model.test_cfg.average_clips = args.average_clips
            else:
                cfg.test_cfg.average_clips = args.average_clips

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # The flag is used to register module's hooks
    cfg.setdefault('module_hooks', [])

    # build the dataloader
    dataset = build_dataset(cfg.data.test, dict(test_mode=True))
    dataloader_setting = dict(videos_per_gpu=cfg.data.get('videos_per_gpu', 1),
                              workers_per_gpu=cfg.data.get(
                                  'workers_per_gpu', 1),
                              dist=distributed,
                              shuffle=False)
    dataloader_setting = dict(dataloader_setting,
                              **cfg.data.get('test_dataloader', {}))
    data_loader = build_dataloader(dataset, **dataloader_setting)

    # remove redundant pretrain steps for testing
    turn_off_pretrained(cfg.model)

    # build the model and load checkpoint
    model = build_model(cfg.model,
                        train_cfg=None,
                        test_cfg=cfg.get('test_cfg'))

    if len(cfg.module_hooks) > 0:
        register_module_hooks(model, cfg.module_hooks)

    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    load_checkpoint(model, args.checkpoint, map_location='cpu')

    if args.fuse_conv_bn:
        model = fuse_conv_bn(model)

    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        outputs = single_gpu_test(model, data_loader)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        outputs = multi_gpu_test(model, data_loader, args.tmpdir,
                                 args.gpu_collect)

    rank, _ = get_dist_info()
    if rank == 0:
        if output_config.get('out', None):
            out = output_config['out']
            print(f'\nwriting results to {out}')
            #import pdb
            #pdb.set_trace()
            print(out[-4:])
            if out[-4:] == 'json':
                result_dict = {}
                for result in outputs:
                    video_name = result['video_name']
                    result_dict[video_name] = result['proposal_list']
                output_dict = {
                    'version': 'VERSION 1.3',
                    'results': result_dict,
                    'external_data': {}
                }
                mmcv.dump(output_dict, out)
            else:
                dataset.dump_results(outputs, **output_config)

        if eval_config:
            eval_res = dataset.evaluate(outputs, **eval_config)
            for name, val in eval_res.items():
                print(f'{name}: {val:.04f}')
Beispiel #26
0
def main():
    args = parse_args()

    cfg = mmcv.Config.fromfile(args.config)
    if args.update_config is not None:
        cfg.merge_from_dict(args.update_config)
    cfg = update_config(cfg, args)
    cfg = propagate_root_dir(cfg, args.data_dir)

    # Load output_config from cfg
    output_config = cfg.get('output_config', {})
    # Overwrite output_config from args.out
    output_config = merge_configs(output_config, dict(out=args.out))

    # Load eval_config from cfg
    eval_config = cfg.get('eval_config', {})
    # Overwrite eval_config from args.eval
    eval_config = merge_configs(eval_config, dict(metrics=args.eval))
    # Add options from args.option
    eval_config = merge_configs(eval_config, args.options)

    assert output_config or eval_config, \
        ('Please specify at least one operation (save or eval the '
         'results) with the argument "--out" or "--eval"')

    # init distributed env first, since logger depends on the dist info.
    distributed = args.launcher != 'none'
    if distributed:
        init_dist(args.launcher, **cfg.dist_params)

    # get rank
    rank, _ = get_dist_info()

    if cfg.get('seed'):
        print(f'Set random seed to {cfg.seed}')
        set_random_seed(cfg.seed)

    # build the dataset
    dataset = build_dataset(cfg.data, 'test', dict(test_mode=True))
    if cfg.get('classes'):
        dataset = dataset.filter(cfg.classes)
    if rank == 0:
        print(f'Test datasets:\n{str(dataset)}')

    # build the dataloader
    data_loader = build_dataloader(
        dataset,
        videos_per_gpu=1,
        workers_per_gpu=cfg.data.workers_per_gpu,
        dist=distributed,
        shuffle=False
    )

    # build the model and load checkpoint
    model = build_model(
        cfg.model,
        train_cfg=None,
        test_cfg=cfg.test_cfg,
        class_sizes=dataset.class_sizes,
        class_maps=dataset.class_maps
    )
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)

    # load model weights
    load_checkpoint(model, args.checkpoint, map_location='cpu', force_matching=True)

    if args.fuse_conv_bn:
        model = fuse_conv_bn(model)

    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        outputs = single_gpu_test(model, data_loader)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        outputs = multi_gpu_test(model, data_loader, args.tmpdir, args.gpu_collect)

    if rank == 0:
        if output_config:
            out = output_config['out']
            print(f'\nwriting results to {out}')
            dataset.dump_results(outputs, **output_config)

        if eval_config:
            eval_res = dataset.evaluate(outputs, **eval_config)

            print('\nFinal metrics:')
            for name, val in eval_res.items():
                print(f'{name}: {val:.04f}')